Publication:
Automatic Interpretable Retail forecasting with promotional scenarios

dc.contributor.departmentDepartment of Business Administration
dc.contributor.kuauthorAli, Özden Gür
dc.contributor.kuauthorGürlek, Ragıp
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Business Administration
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.schoolcollegeinstituteGraduate School of Business
dc.contributor.yokid57780
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:44:05Z
dc.date.issued2020
dc.description.abstractBudgeting and planning processes require medium-term sales forecasts with marketing scenarios. The complexity in modern retailing necessitates consistent, automatic forecasting and insight generation. Remedies to the high dimensionality problem have drawbacks; black box machine learning methods require voluminous data and lack insights, while regularization may bias causal estimates in interpretable models. The proposed FAIR (Fully Automatic Interpretable Retail forecasting) method supports the retail planning process with multi-step-ahead category-store level forecasts, scenario evaluations, and insights. It considers category-store specific seasonality, focaland cross-category marketing, and adaptive base sales while dealing with regularization-induced confounding. We show, with three chains from the IRI dataset involving 30 categories, that regularization-induced confounding decreases forecast accuracy. By including focal- and cross-category marketing, as well as random disturbances, forecast accuracy is increased. FAIR is more accurate than the black box machine learning method Boosted Trees and other benchmarks while also providing insights that are in line with the marketing literature.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume36
dc.formatpdf
dc.identifier.doi10.1016/j.ijforecast.2020.02.003
dc.identifier.eissn1872-8200
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03484
dc.identifier.issn0169-2070
dc.identifier.linkhttps://doi.org/10.1016/j.ijforecast.2020.02.003
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85082871676
dc.identifier.urihttps://hdl.handle.net/20.500.14288/387
dc.identifier.wos570797300014
dc.keywordsCausality
dc.keywordsDecomposition
dc.keywordsMarketing
dc.keywordsMultivariate time series
dc.keywordsPanel data
dc.keywordsMachine learning
dc.languageEnglish
dc.publisherElsevier
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10276
dc.sourceInternational Journal of Forecasting
dc.subjectBusiness and economics
dc.titleAutomatic Interpretable Retail forecasting with promotional scenarios
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9409-4532
local.contributor.authoridN/A
local.contributor.kuauthorAli, Özden Gür
local.contributor.kuauthorGürlek, Ragıp
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10276.pdf
Size:
8.93 MB
Format:
Adobe Portable Document Format