Publication: Photovoltaic neurointerface based on aluminum antimonide nanocrystals
Files
Program
KU Authors
Co-Authors
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
Light activated modulation of neural activity is an emerging field for the basic investigation of neural systems and development of new therapeutic methods such as artificial retina. Colloidal inorganic nanocrystals have great potential for neural interfaces due to their adjustable optoelectronic properties via high-level structural, compositional, and size control. However, toxic heavy metal content (e.g., cadmium, mercury), electrochemical coupling to the cells and low photon-to-current efficiency limit their effective use. Here, we introduce the use of aluminum antimonide (AlSb) nanocrystals as the cell interfacing layer for capacitive neural stimulation in the blue spectrum. We demonstrate successful photostimulation of primary hippocampal neurons below ocular safety limits. In addition, our device shows high biocompatibility in vitro and passive accelerated ageing tests indicate a functional lifetime over 3 years showing their feasible use for chronic implants. We demonstrate that nanocrystal biointerfaces hold high promise for future bioelectronics and protheses.
Source:
Communications Materials
Publisher:
Springer Nature
Keywords:
Subject
Materials science