Publication:
Normal mode analysis of KRas4B reveals partner specific dynamics

dc.contributor.coauthorJang, Hyunbum
dc.contributor.coauthorNussinov, Ruth
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Molecular Biology and Genetics
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorEren, Meryem
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorKeskin, Özlem
dc.contributor.kuauthorTunçbağ, Nurcan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T12:00:57Z
dc.date.issued2021
dc.description.abstractRas GTPase interacts with its regulators and downstream effectors for its critical function in cellular signaling. Targeting the disrupted mechanisms in Ras-related human cancers requires understanding the distinct dynamics of these protein-protein interactions. We performed normal mode analysis (NMA) of KRas4B in wild-type or mutant monomeric and neurofibromin-1 (NF1), Son of Sevenless 1 (SOS1) or Raf-1 bound dimeric conformational states to reveal partner-specific dynamics of the protein. Gaussian network model (GNM) analysis showed that the known KRas4B lobes further partition into subdomains upon binding to its partners. Furthermore, KRas4B interactions with different partners suppress the flexibility in not only their binding sites but also distant residues in the allosteric lobe in a partner-specific way. The conformational changes can be driven by intrinsic residue fluctuations of the open state KRas4B-GDP, as we illustrated with anisotropic network model (ANM) analysis. The allosteric paths connecting the nucleotide binding residues to the allosteric site at alpha 3-L7 portray differences in the inactive and active states. These findings help in understanding the partner-specific KRas4B dynamics, which could be utilized for therapeutic targeting.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue20
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Cancer Institute
dc.description.sponsorshipNational Institutes of Health
dc.description.sponsorshipIntramural Research Program of the NIH
dc.description.sponsorshipCenter for Cancer Research
dc.description.versionPublisher version
dc.description.volume125
dc.identifier.doi10.1021/acs.jpcb.1c00891
dc.identifier.eissn1520-5207
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02943
dc.identifier.issn1520-6106
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85106353454
dc.identifier.urihttps://hdl.handle.net/20.500.14288/956
dc.identifier.wos657362700004
dc.keywordsStructural basis
dc.keywordsCatalytic site
dc.keywordsHotspots
dc.keywordsRas
dc.keywordsProteins
dc.keywordsGTP
dc.keywordsActivation
dc.keywordsMutations
dc.keywordsMotions
dc.keywordsFluctuations
dc.keywordsInterfaces
dc.keywordsMonomers
dc.keywordsProtein structure
dc.keywordsChemical structure
dc.keywordsConformation
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantnoHHSN261200800001E
dc.relation.ispartofJournal of Physical Chemistry B
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9590
dc.subjectChemistry
dc.titleNormal mode analysis of KRas4B reveals partner specific dynamics
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorTunçbağ, Nurcan
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorKeskin, Özlem
local.contributor.kuauthorEren, Meryem
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Molecular Biology and Genetics
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2School of Medicine
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublicationaee2d329-aabe-4b58-ba67-09dbf8575547
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9590.pdf
Size:
9.78 MB
Format:
Adobe Portable Document Format