Publication: Pseudo-hermiticity, PT symmetry, and the metric operator
dc.contributor.coauthor | NA | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Mostafazadeh, Ali | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T23:37:16Z | |
dc.date.issued | 2005 | |
dc.description.abstract | The main achievements of Pseudo-Hermitian Quantum Mechanics and its distinction from the indefinite-metric quantum theories are reviewed. The issue of the non-uniqueness of the metric operator and its consequences for defining the observables are discussed. A systematic perturbative expression for the most general metric operator is offered and its application for a toy model is outlined. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 9 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 55 | |
dc.identifier.doi | 10.1007/s10582-005-0121-z | |
dc.identifier.issn | 0011-4626 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-27844445189 | |
dc.identifier.uri | https://doi.org/10.1007/s10582-005-0121-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/12784 | |
dc.identifier.wos | 232892600018 | |
dc.keywords | Pseudo-hermitian | |
dc.keywords | Quasi-hermitian | |
dc.keywords | Pt Symmetry | |
dc.keywords | Metric operator | |
dc.keywords | Quantum-mechanics | |
dc.keywords | Pt-Symmetry | |
dc.keywords | Hamiltonians | |
dc.keywords | Spectrum | |
dc.language.iso | eng | |
dc.publisher | Inst Physics Acad Sci Czech Republic | |
dc.relation.ispartof | Czechoslovak Journal of Physics | |
dc.subject | Physics | |
dc.title | Pseudo-hermiticity, PT symmetry, and the metric operator | |
dc.type | Conference Proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Mostafazadeh, Ali | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit2 | Department of Mathematics | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |