Publication:
SVD Based Least Squares for X-Ray Pneumonia Classification Using Deep Features

dc.conference.date2025-08-31 through 2025-09-03
dc.conference.locationIstanbul
dc.contributor.coauthorErdogan, Meta (60197655800)
dc.contributor.coauthorDemirtas, Sebnem (59912478000)
dc.date.accessioned2025-12-31T08:24:34Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractAccurate and early diagnosis of pneumonia through X-ray imaging is essential for effective treatment and improved patient outcomes. Recent advancements in machine learning have enabled automated diagnostic tools that assist radiologists in making more reliable and efficient decisions. In this work, we propose a Singular Value Decomposition-based Least Squares (SVD-LS) framework for multi-class pneumonia classification, leveraging powerful feature representations from state-of-the-art self-supervised and transfer learning models. Rather than relying on computationally expensive gradientbased fine-tuning, we employ a closed-form, non-iterative classification approach that ensures efficiency without compromising accuracy. Experimental results demonstrate that SVD-LS achieves competitive performance while offering significantly reduced computational costs, making it a viable alternative for real-time medical imaging applications. The implementation is available at: github.com/meterdogan07/SVD-LS. © 2025 IEEE.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/MLSP62443.2025.11204290
dc.identifier.embargoNo
dc.identifier.isbn9798331570293
dc.identifier.isbn9781467374545
dc.identifier.isbn9781728166629
dc.identifier.isbn9781538654774
dc.identifier.isbn9781509063413
dc.identifier.isbn9781728163383
dc.identifier.isbn9781728108247
dc.identifier.isbn9781509007462
dc.identifier.isbn9781467310260
dc.identifier.isbn9781479936946
dc.identifier.issn2161-0363
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105022061248
dc.identifier.urihttps://doi.org/10.1109/MLSP62443.2025.11204290
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31801
dc.keywordsChest X-ray Imaging
dc.keywordsPneumonia Classification
dc.keywordsRegularized Least Squares
dc.keywordsSelf-Supervised Learning
dc.keywordsSingular Value Decomposition (SVD)
dc.keywordsTransfer Learning
dc.language.isoeng
dc.publisherIEEE Computer Society
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIEEE International Workshop on Machine Learning for Signal Processing, MLSP
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleSVD Based Least Squares for X-Ray Pneumonia Classification Using Deep Features
dc.typeConference Proceeding
dspace.entity.typePublication

Files