Publication:
Compact femtosecond lasers based of novel multipass cavities

dc.contributor.coauthorKowalevicz Jr., Andrew M.
dc.contributor.coauthorIppen, Erich P.
dc.contributor.coauthorFujimoto, James G.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorSennaroğlu, Alphan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid23851
dc.date.accessioned2024-11-09T22:49:03Z
dc.date.issued2004
dc.description.abstractThis paper provides a comprehensive description of the design of compact femtosecond solid-state lasers that are based on novel multipass cavity (MPC) configurations to extend the resonator length. of special importance are the q-preserving MPCs, which leave invariant the original spotsize distribution and Kerr lens mode-locking point of the short cavity. The general design guidelines of q-preserving MPCs are first reviewed and a novel configuration is proposed for the case where the MPC consists of notch mirrors. A class of non-q-preserving compact cavities is also analyzed and conditions needed to minimize the deviation from the q-preserving configuration are discussed. The design and performance of a q-preserving and a non-q-preserving mode-locked Ti: Al2 O3 laser are then described as examples. These compact oscillators measuring only 30 cm × 45 cm could produce pulses as short as 19 fs at a repetition rate of around 31 MHz. Up to ∼ 3.6 nJ of pulse energy could be obtained with only ∼ 1.5 W of pump power. Finally, two-mirror MPC geometries are examined to investigate the limits of compactness and energy scaling.
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume40
dc.identifier.doi10.1109/JQE.2004.826438
dc.identifier.issn0018-9197
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-2442539210&doi=10.1109%2fJQE.2004.826438&partnerID=40&md5=6cff4373e54d727daf818e05e27ab9a3
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-2442539210
dc.identifier.urihttp://dx.doi.org/10.1109/JQE.2004.826438
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6443
dc.keywordsCavity design
dc.keywordsFemtosecond lasers
dc.keywordsFemtosecond optics
dc.keywordsKerr lens mode locking
dc.keywordsTi:sapphire lasers cavity resonators
dc.keywordsLaser optics
dc.keywordsLenses
dc.keywordsOptical design
dc.keywordsOscillators (electronic)
dc.keywordsTitanium compounds
dc.keywordsCavity design
dc.keywordsFemtosecond lasers
dc.keywordsFemtosecond optics
dc.keywordsKerr lens mode locking
dc.keywordsSolid state lasers
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.sourceIEEE Journal of Quantum Electronics
dc.subjectElectrical engineering
dc.titleCompact femtosecond lasers based of novel multipass cavities
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-4391-0189
local.contributor.kuauthorSennaroğlu, Alphan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files