Publication:
Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform

dc.contributor.coauthorLi, Nanxi
dc.contributor.coauthorVermeulen, Diedrik
dc.contributor.coauthorSu, Zhan
dc.contributor.coauthorXin, Ming
dc.contributor.coauthorSingh, Neetesh
dc.contributor.coauthorRuocco, Alfonso
dc.contributor.coauthorNotaros, Jelena
dc.contributor.coauthorPoulton, Christopher V.
dc.contributor.coauthorTimurdogan, Erman
dc.contributor.coauthorBaiocco, Christopher
dc.contributor.coauthorWatts, Michael R.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorMağden, Emir Salih
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T12:11:33Z
dc.date.issued2018
dc.description.abstractA tunable laser source is a crucial photonic component for many applications, such as spectroscopic measurements, wavelength division multiplexing (WDM), frequency-modulated light detection and ranging (LIDAR), and optical coherence tomography (OCT). In this article, we demonstrate the first monolithically integrated erbium-doped tunable laser on a complementary-metal-oxide-semiconductor (CMOS)-compatible silicon photonics platform. Erbium-doped Al2O3 sputtered on top is used as a gain medium to achieve lasing. The laser achieves a tunability from 1527 nm to 1573 nm, with a >40 dB side mode suppression ratio (SMSR). The wide tuning range (46 nm) is realized with a Vernier cavity, formed by two Si3N4 microring resonators. With 107 mW on-chip 980 nm pump power, up to 1.6 mW output lasing power is obtained with a 2.2% slope efficiency. The maximum output power is limited by pump power. Fine tuning of the laser wavelength is demonstrated by using the gain cavity phase shifter. Signal response times are measured to be around 200 mu s and 35 mu s for the heaters used to tune the Vernier rings and gain cavity longitudinal mode, respectively. The linewidth of the laser is 340 kHz. measured via a self-delay heterodyne detection method. Furthermore, the laser signal is stabilized by continuous locking to a mode-locked laser (MLL) over 4900 seconds with a measured peak-to-peak frequency deviation below 10 Hz.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue13
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipDefense Advanced Research Projects Agency (DARPA) Direct On-Chip Digital Optical Synthesizer (DODOS) project
dc.description.versionPublisher version
dc.description.volume26
dc.identifier.doi10.1364/OE.26.016200
dc.identifier.eissn1094-4087
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01433
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85049022011
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1074
dc.identifier.wos436226800015
dc.keywordsWave-guide
dc.keywordsFiber laser
dc.keywordsSupercontinuum generation
dc.keywordsNarrow-linewidth
dc.keywordsHybrid silicon
dc.keywordsOn-insulator
dc.keywordsRing laser
dc.keywordsHigh-power
dc.keywordsConversion
dc.keywordsModulator
dc.language.isoeng
dc.publisherOptical Society of America (OSA)
dc.relation.grantnoHR0011-15-C-0056
dc.relation.ispartofOptics Express
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8036
dc.subjectOptics
dc.titleMonolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMağden, Emir Salih
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8036.pdf
Size:
5.03 MB
Format:
Adobe Portable Document Format