Publication:
Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients

dc.contributor.coauthorGiachini, P. A. G. S.
dc.contributor.coauthorGupta, Somil Subhashchandra
dc.contributor.coauthorWang, Wendong
dc.contributor.coauthorWood, D.
dc.contributor.coauthorYunusa, Muhammad
dc.contributor.coauthorBaharlou, E.
dc.contributor.coauthorMenges, A.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:15:45Z
dc.date.issued2020
dc.description.abstractFunctionally graded materials (FGMs) enable applications in fields such as biomedicine and architecture, but their fabrication suffers from shortcomings in gradient continuity, interfacial bonding, and directional freedom. In addition, most commercial design software fail to incorporate property gradient data, hindering explorations of the design space of FGMs. Here, we leveraged a combined approach of materials engineering and digital processing to enable extrusion-based multimaterial additive manufacturing of cellulose-based tunable viscoelastic materials with continuous, high-contrast, and multidirectional stiffness gradients. A method to engineer sets of cellulose-based materials with similar compositions, yet distinct mechanical and rheological properties, was established. In parallel, a digital workflow was developed to embed gradient information into design models with integrated fabrication path planning. The payoff of integrating these physical and digital tools is the ability to achieve the same stiffness gradient in multiple ways, opening design possibilities previously limited by the rigid coupling of material and geometry.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipGerman Research Foundation (DFG)
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipUniversity of Stuttgart
dc.description.versionPublisher version
dc.description.volume6
dc.formatpdf
dc.identifier.doi10.1126/sciadv.aay0929
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02089
dc.identifier.issn2375-2548
dc.identifier.linkhttps://doi.org/10.1126/sciadv.aay0929
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85079650494
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1355
dc.identifier.wos514842000014
dc.keywords3D printers
dc.keywordsAdditives
dc.keywordsBeams and girders
dc.keywordsCellulose
dc.keywordsDigital devices
dc.keywordsMotion planning
dc.keywordsStiffness
dc.keywordsViscoelasticity
dc.languageEnglish
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantnoEXC 2120/1 - 390831618
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8721
dc.sourceScience Advances
dc.subjectMultidisciplinary sciences
dc.titleAdditive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8721.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format