Publication:
Dynamical phases of short-term memory mechanisms in RNNs

dc.conference.date13-19 JUL, 2025
dc.conference.locationVancouver
dc.contributor.coauthorDinç, Fatih
dc.contributor.coauthorYuksekgonul, Mert
dc.contributor.coauthorBlanco-Pozo, Marta
dc.contributor.coauthorCirakman, Ege
dc.contributor.coauthorSchnitzer, Mark J.
dc.contributor.coauthorTanaka, Hidenori
dc.contributor.coauthorYuan, Peng
dc.contributor.coauthorMiolane, Nina
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuauthorKurtkaya, Barışcan
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2026-01-16T08:45:52Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractShort-term memory is essential for cognitive processing, yet our understanding of its neural mechanisms remains unclear. Neuroscience has long focused on how sequential activity patterns, where neurons fire one after another within large networks, can explain how information is maintained. While recurrent connections were shown to drive sequential dynamics, a mechanistic understanding of this process still remains unknown. In this work, we introduce two unique mechanisms that can support this form of short-term memory: slowpoint manifolds generating direct sequences or limit cycles providing temporally localized approximations. Using analytical models, we identify fundamental properties that govern the selection of each mechanism. Precisely, on shortterm memory tasks (delayed cue-discrimination tasks), we derive theoretical scaling laws for critical learning rates as a function of the delay period length, beyond which no learning is possible. We empirically verify these results by training and evaluating approximately 80,000 recurrent neural networks (RNNs), which are publicly available for further analysis1 . Overall, our work provides new insights into short-term memory mechanisms and proposes experimentally testable predictions for systems neuroscience.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doiN/A
dc.identifier.embargoNo
dc.identifier.endpage32062
dc.identifier.isbn9781713845065
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105023829954
dc.identifier.startpage32032
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32055
dc.identifier.volume267
dc.keywordsComputational neuroscience
dc.keywordsLong short-term memory
dc.keywordsActivity patterns
dc.keywordsCognitive processing
dc.keywordsDynamical phasis
dc.keywordsLarger networks
dc.keywordsMechanistics
dc.keywordsMemory mechanism
dc.keywordsNeural mechanisms
dc.keywordsNeural-networks
dc.keywordsSequential activities
dc.keywordsShort term memory
dc.keywordsNeurons
dc.language.isoeng
dc.publisherML Research Press
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofProceedings of Machine Learning Research 42nd International Conference on Machine Learning
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectEngineering
dc.titleDynamical phases of short-term memory mechanisms in RNNs
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameYemez
person.familyNameKurtkaya
person.givenNameYücel
person.givenNameBarışcan
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files