Publication:
Rate-delay tradeoff with network coding in molecular nanonetworks

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Molecular communication is a novel nanoscale communication paradigm, in which information is encoded in messenger molecules for transmission and reception. However, molecular communication is unreliable and has highly varying long propagation delays mainly due to the stochastic behavior of the freely diffusing molecules. Thus, it is essential to analyze its delay characteristics, as well as the tradeoff between the rate and delay, in order to reveal the capabilities and limitations of molecular information transmission in nanonetworks. In this paper, first, a new messenger-based molecular communication model, which includes a nanotransmitter sending information to a nanoreceiver, is introduced. The information is encoded on a polyethylene molecule, CH3(CHX)(n)CH2F, where X stands for H and F atoms representing 0 and 1 bits, respectively. The emission of the molecules is modeled by puffing process which is inspired by the alarm pheromone release by animals in dangerous situations. In this work, the rate-delay characteristics of this messenger-based molecular communication model are explored. Then, a Nano-Relay is inserted in the model, which XOR's the incoming messages from two different nanomachines. Performance evaluation shows that indeed, a simple network coding mechanism significantly improves the rate given delay of the system, and vice versa.

Source

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Subject

Electrical electronics engineering, Nanoscience, Nanotechnology, Physics, Materials science

Citation

Has Part

Source

IEEE Transactions on Nanotechnology

Book Series Title

Edition

DOI

10.1109/TNANO.2013.2241449

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details