Publication:
SVM for sketch recognition: which hyperparameter interval to try?

dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYeşilbek, Kemal Tuğrul
dc.contributor.kuauthorŞen, Cansu
dc.contributor.kuauthorÇakmak, Şerike
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid18632
dc.date.accessioned2024-11-09T22:56:56Z
dc.date.issued2015
dc.description.abstractHyperparameters are among the most crucial factors that effect the performance of machine learning algorithms. Since there is not a common ground on which hyperparameter combinations give the highest performance in terms of prediction accuracy, hyperparameter search needs to be conducted each time a model is to be trained. in this work, we analyzed how similar hyperparemeters perform on various datasets from sketch recognition domain. Results have shown that hyperparameter search space can be reduced to a subspace despite differences in dataset characteristics.
dc.description.indexedbyWoS
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.isbn978-1-4673-7386-9
dc.identifier.issn2165-0608
dc.identifier.quartileN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7467
dc.identifier.wos380500900216
dc.keywordsHyperparameter search
dc.keywordsSketch data
dc.keywordsGrid search
dc.keywordsCross validation
dc.keywordsSupport vector machines
dc.languageTurkish
dc.publisherIEEE
dc.source2015 23rd Signal Processing and Communications Applications Conference (Siu)
dc.subjectCivil engineering
dc.subjectElectrical electronics engineering
dc.subjectTelecommunication
dc.titleSVM for sketch recognition: which hyperparameter interval to try?
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authorid0000-0002-1524-1646
local.contributor.kuauthorYeşilbek, Kemal Tuğrul
local.contributor.kuauthorŞen, Cansu
local.contributor.kuauthorÇakmak, Şerike
local.contributor.kuauthorSezgin, Tevfik Metin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files