Publication:
A centralized frost detection and estimation scheme for Internet-connected domestic refrigerators

dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentMARC (Manufacturing and Automation Research Center)
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-03-06T20:58:44Z
dc.date.issued2025
dc.description.abstractFrost accumulation on heat exchange units is a significant problem in refrigeration systems, adversely affecting their operating performance and thereby leading to increased power consumption. Therefore, timely detection and accurate quantification of frost are crucial for effective defrosting strategies. This study presents a novel centralized cloud-based IoT scheme for frost detection and thickness estimation. The image processing is performed on the cloud server to process evaporator coil images for frost thickness quantification. Experiments were conducted on a domestic refrigerator to assess the effectiveness of the proposed image-processing approach and determine latency and processing time. The presented scheme effectively quantifies frost thickness on the evaporator in the 1-5 mm range with a 10.8% error margin. The total inference time, which includes image acquisition, pre-processing, transmission latency, and frost thickness estimation, is approximately 5.15 seconds. The results demonstrate that the proposed image processing method performs comparably to conventional sensors and similar image processing techniques. Moreover, the centralized cloud-based IoT architecture presented effectively meets the scalability demands of consumer refrigerators.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1016/j.ijrefrig.2024.10.032
dc.identifier.eissn1879-2081
dc.identifier.issn0140-7007
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85208114909
dc.identifier.urihttps://doi.org/10.1016/j.ijrefrig.2024.10.032
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27550
dc.identifier.volume169
dc.identifier.wos1354472200001
dc.keywordsFrost detection
dc.keywordsFrost thickness estimation
dc.keywordsImage processing
dc.keywordsInternet of things
dc.keywordsCloud computing
dc.keywordsRefrigeration automation
dc.language.isoeng
dc.publisherElsevier Science Ltd
dc.sourceINTERNATIONAL JOURNAL OF REFRIGERATION
dc.subjectThermodynamics
dc.subjectEngineering
dc.titleA centralized frost detection and estimation scheme for Internet-connected domestic refrigerators
dc.title.alternativeUn schéma centralisé de détection et d'estimation du gel pour les réfrigérateurs domestiques connectés à Internet
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorLazoğlu, İsmail
local.contributor.kuauthorUr Rahman, Hammad
local.contributor.kuauthorMehmood, Mussawir Ul
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2MARC (Manufacturing and Automation Research Center)
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication52df3968-be7f-4c06-92e5-3b48e79ba93a
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files