Publication:
Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning

Placeholder

School / College / Institute

Organizational Unit

Program

KU-Authors

KU Authors

Co-Authors

Tomislav Pavlović
Flavio Azevedo
Koustav De
Julián C Riaño-Moreno
Marina Maglić
Theofilos Gkinopoulos
Patricio Andreas Donnelly-Kehoe
César Payán-Gómez
Guanxiong Huang
Jaroslaw Kantorowicz

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution-individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.

Source

Publisher

Oxford University Press (OUP)

Subject

Medicine, Science

Citation

Has Part

Source

PNAS Nexus

Book Series Title

Edition

DOI

10.1093/pnasnexus/pgac093

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads

View PlumX Details