Publication:
Semantic object segmentation by dynamic learning from multiple examples

dc.contributor.coauthorXu, Yaowu
dc.contributor.coauthorSaber, Eli
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-10T00:00:35Z
dc.date.issued2004
dc.description.abstractWe present a novel "dynamic learning" approach for an intelligent image database system to automatically improve object segmentation and labeling without user intervention, as new examples become available, for object-based indexing. The proposed approach is an extension of our earlier work on "learning by example," which addressed labeling of similar objects in a set of database images based on a single example. It utilizes multiple example object templates to improve the accuracy of existing object segmentations and labels. We also propose to use Normalized Area of Symmetric Differences (NASD) as the similarity metric in "dynamic learning", due to its robustness to boundary noise that results from automatic image segmentation. The performance of the dynamic learning concept is demonstrated by experimental results.
dc.description.indexedbyScopus
dc.description.indexedbyWOS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipInstitute of Electrical and Electronics Engineers,
dc.description.volume3
dc.identifier.issn1520-6149
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-4544228327andpartnerID=40andmd5=166a1541c9049ed5acc806be6942c84b
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-4544228327
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15831
dc.keywordsDatabase systems
dc.keywordsIntelligent agents
dc.keywordsLearning systems
dc.keywordsObject recognition
dc.keywordsRobustness (control systems)
dc.keywordsSemantics
dc.keywordsUser interfaces
dc.keywordsVisualization
dc.keywordsDynamic learning
dc.keywordsObject segmentation
dc.keywordsObject templates
dc.keywordsObject-based indexing
dc.keywordsImage segmentation
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.subjectElectrical electronics engineering
dc.titleSemantic object segmentation by dynamic learning from multiple examples
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTekalp, Ahmet Murat
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files