Publication:
Hydrogen-bonded layer-by-layer films of block copolymer micelles with pH-responsive cores

dc.contributor.coauthorZhu,Zhichen
dc.contributor.coauthorZhuk, Aliaksandr
dc.contributor.coauthorSukhishvili, Svetlana A.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorErel-Göktepe, İrem
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:49:23Z
dc.date.issued2011
dc.description.abstractWe report on construction of hydrogen-bonded monolayers and multilayers of micelles of the poly(2-(diethylamino)ethyl methacrylate)-block-poly(N-isopropyl acrylamide) (PDEA-b-PNIPAM) with PNIPAM-corona and polybasic PDEA cores. Films were constructed at pH 7.5 and 25 degrees C to assure the deposition of PDEA-b-PNIPAM in the micellar form. When monolayers of block copolymer micelles (BCMs) were exposed to moderately acidic pH values, micellar cores dissolved, while PDEA-b-PNIPAM remained adsorbed at the surface as unimers. In contrast to reversible micellization of PDEA-b-PNIPAM in solution, micelle-to-unimer transition was irreversible at the surface. Adsorption of a layer of tannic acid (TA) or polyethacrylic acid (PEAA) on top of BCM monolayers inhibited pH-triggered morphological changes within adsorbed BCMs. By taking advantage of the high pK(a) values of TA and PEAA, we were also able to construct multilayers of PDEA-b-PNIPAM micelles through hydrogen bonding interactions between micellar PNIPAM coronas and TA or PEAA. Similar to BCM monolayers coated with TA or PEAA, dissolution of BCMs was also inhibited when incorporated within hydrogen-bonded multilayers. Such inhibition of dissolution is due to enhanced hydrogen bonding interactions between coronal PNIPAM chains and protonated TA molecules or PEAA chains at decreasing pH values restricting the pH-induced conformational changes of the micellar core chains within the adsorbed layer. Films of responsive BCMs are attractive coatings for controlled delivery of functional molecules from surfaces due to a combination of stimuli-response properties with the relatively high loading capacity for functional molecules. (C) 2010 Elsevier Inc. All rights reserved.
dc.description.indexedbyWOS
dc.description.issue1
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNSF [DMR-0710591, DMR-0906474] This work was supported by the NSF under Awards DMR-0710591 and DMR-0906474.
dc.description.volume355
dc.identifier.doi10.1016/j.jcis.2010.11.083
dc.identifier.eissn1095-7103
dc.identifier.issn0021-9797
dc.identifier.quartileQ1
dc.identifier.urihttps://doi.org/10.1016/j.jcis.2010.11.083
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6472
dc.identifier.wos286570900009
dc.keywordsSelf-assembly
dc.keywordsBlock copolymer micelles
dc.keywordsLayer-by-layer
dc.keywordsMultilayers
dc.keywordsHydrogen bonding
dc.keywordspH-responsive
dc.keywordsAssembled multilayer films
dc.keywordsAqueous-solution
dc.keywordsAdsorption
dc.keywordsEncapsulation
dc.keywordsAzobenzene
dc.keywordsRelease
dc.keywordsPolymer
dc.keywordsPhase
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofJournal of Colloid and Interface Science
dc.subjectChemistry
dc.subjectPhysical
dc.titleHydrogen-bonded layer-by-layer films of block copolymer micelles with pH-responsive cores
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorErel-Göktepe, İrem
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemistry
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files