Publication:
Logistic regression model using Scheimpflug-Placido cornea topographer parameters to diagnose keratoconus

dc.contributor.coauthorAltınkurt, Emre
dc.contributor.coauthorAvcı, Özkan
dc.contributor.coauthorUğurlu, Adem
dc.contributor.coauthorCebeci, Zafer
dc.contributor.coauthorÖzbilen, Kemal Turgay
dc.contributor.kuauthorMüftüoğlu, Orkun
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid188588
dc.date.accessioned2024-11-09T11:54:09Z
dc.date.issued2021
dc.description.abstractPurpose: diagnose keratoconus by establishing an effective logistic regression model from the data obtained with a Scheimpflug-Placido cornea topographer. Methods: topographical parameters of 125 eyes of 70 patients diagnosed with keratoconus by clinical or topographical findings were compared with 120 eyes of 63 patients who were defined as keratorefractive surgery candidates. The receiver operating character (ROC) curve analysis was performed to determine the diagnostic ability of the topographic parameters. The data set of parameters with an AUROC (area under the ROC curve) value greater than 0.9 was analyzed with logistic regression analysis (LRA) to determine the most predictive model that could diagnose keratoconus. A logit formula of the model was built, and the logit values of every eye in the study were calculated according to this formula. Then, an ROC analysis of the logit values was done. Results: Baiocchi Calossi Versaci front index (BCVf) had the highest AUROC value (0.976) in the study. The LRA model, which had the highest prediction ability, had 97.5% accuracy, 96.8% sensitivity, and 99.2% specificity. The most significant parameters were found to be BCVf (p=0.001), BCVb (Baiocchi Calossi Versaci back) (p=0.002), posterior rf (apical radius of the flattest meridian of the aspherotoric surface in 4.5 mm diameter of the cornea) (p=0.005), central corneal thickness (p=0.072), and minimum corneal thickness (p=0.494). Conclusions: the LRA model can distinguish keratoconus corneas from normal ones with high accuracy without the need for complex computer algorithms.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume2021
dc.formatpdf
dc.identifier.doi10.1155/2021/5528927
dc.identifier.eissn2090-0058
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02997
dc.identifier.issn2090-004X
dc.identifier.linkhttps://doi.org/10.1155/2021/5528927
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85107231928
dc.identifier.urihttps://hdl.handle.net/20.500.14288/790
dc.identifier.wos668995900001
dc.keywordsSubclinical keratoconus
dc.keywordsImaging parameters
dc.keywordsMachine ectasia
dc.languageEnglish
dc.publisherHindawi
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9644
dc.sourceJournal of Ophthalmology
dc.subjectOphthalmology
dc.titleLogistic regression model using Scheimpflug-Placido cornea topographer parameters to diagnose keratoconus
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-4566-9149
local.contributor.kuauthorMüftüoğlu, Orkun

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9644.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format