Publication:
Systems-level analysis reveals multiple modulators of epithelial-mesenchymal transition and identifies DNAJB4 and CD81 as novel metastasis inducers in breast cancer

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit
Organizational Unit
SCHOOL OF MEDICINE
Upper Org Unit

Program

KU Authors

Co-Authors

Saatci, Ozge
Ersan, Pelin Gulizar
Trappe, Kathrin
Renard, Bernhard Y.
Tuncbag, Nurcan
Sahin, Ozgur

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo. Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/ or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.

Source

Publisher

American Society Biochemistry Molecular Biology

Subject

Biochemical research methods

Citation

Has Part

Source

Molecular and Cellular Proteomics

Book Series Title

Edition

DOI

10.1074/mcp.RA119.001446

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

24

Views

0

Downloads

View PlumX Details