Publication: Portfolio optimization based on stochastic dominance and empirical likelihood
dc.contributor.coauthor | Post, Thierry | |
dc.contributor.coauthor | Arvanitis, Stelios | |
dc.contributor.department | Department of Business Administration | |
dc.contributor.kuauthor | Karabatı, Selçuk | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Business Administration | |
dc.contributor.schoolcollegeinstitute | College of Administrative Sciences and Economics | |
dc.contributor.yokid | 38819 | |
dc.date.accessioned | 2024-11-09T11:43:54Z | |
dc.date.issued | 2018 | |
dc.description.abstract | This study develops a portfolio optimization method based on the Stochastic Dominance (SD) decision criterion and the Empirical Likelihood (EL) estimation method. SD and EL share a distribution-free assumption framework which allows for dynamic and non-Gaussian multivariate return distributions. The SD/EL method can be implemented using a two-stage procedure which first elicits the implied probabilities using Convex Optimization and subsequently constructs the optimal portfolio using Linear Programming. The solution asymptotically dominates the benchmark and optimizes the goal function in probability, for a class of weakly dependent processes. A Monte Carlo simulation experiment illustrates the improvement in estimation precision using a set of conservative moment conditions about common factors in small samples. In an application to equity industry momentum strategies, SD/EL yields important out-of-sample performance improvements relative to heuristic diversification, Mean-Variance optimization, and a simple 'plug-in' approach. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 1 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | N/A | |
dc.description.version | Author's final manuscript | |
dc.description.volume | 206 | |
dc.format | ||
dc.identifier.doi | 10.1016/j.jeconom.2018.01.011 | |
dc.identifier.eissn | 1872-6895 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR02352 | |
dc.identifier.issn | 0304-4076 | |
dc.identifier.link | https://doi.org/10.1016/j.jeconom.2018.01.011 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85048887312 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/373 | |
dc.identifier.wos | 445166600007 | |
dc.keywords | Stochastic dominance | |
dc.keywords | Empirical likelihood | |
dc.keywords | Portfolio optimization | |
dc.keywords | Momentum strategies | |
dc.language | English | |
dc.publisher | Elsevier | |
dc.relation.grantno | NA | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8988 | |
dc.source | Journal of Econometrics | |
dc.subject | Business and economics | |
dc.subject | Mathematics | |
dc.subject | Mathematical methods in social sciences | |
dc.title | Portfolio optimization based on stochastic dominance and empirical likelihood | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-6976-5405 | |
local.contributor.kuauthor | Karabatı, Selçuk | |
relation.isOrgUnitOfPublication | ca286af4-45fd-463c-a264-5b47d5caf520 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ca286af4-45fd-463c-a264-5b47d5caf520 |
Files
Original bundle
1 - 1 of 1