Publication:
Properly embedded least area planes in gromov hyperbolic 3-spaces

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorCoşkunüzer, Barış
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:49:04Z
dc.date.issued2008
dc.description.abstractLet X be a Gromov hyperbolic 3-space with cocompact metric, and S 2∞ (X) the sphere at infinity of X. We show that for any simple closed curve ⌈ in S2∞ (X), there exists a properly embedded least area plane in X spanning r. This gives a positive answer to Gabai's conjecture from 1997. Soma has already proven this conjecture in 2004. Our technique here is simpler and more general, and it can be applied to many similar settings. © 2007 American Mathematical Society.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume136
dc.identifier.doi10.1090/S0002-9939-07-09214-3
dc.identifier.issn0002-9939
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-77950613031
dc.identifier.urihttps://doi.org/10.1090/S0002-9939-07-09214-3
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14304
dc.identifier.wos252310600030
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.ispartofProceedings of the American Mathematical Society
dc.subjectMathematics
dc.titleProperly embedded least area planes in gromov hyperbolic 3-spaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorCoşkunüzer, Barış
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files