Publication:
Ratio shift keying modulation for time-varying molecular communication channels

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorAraz, Mustafa Okan
dc.contributor.kuauthorEmirdağı, Ahmet Rasim
dc.contributor.kuauthorKopuzlu, Mahmut Serkan
dc.contributor.kuauthorKuşcu, Murat
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:37:54Z
dc.date.issued2024
dc.description.abstractMolecular Communications (MC) is a bio-inspired communication technique that uses molecules to encode and transfer information. Many efforts have been devoted to developing novel modulation techniques for MC based on various distinguishable characteristics of molecules, such as their concentrations or types. In this paper, we investigate a particular modulation scheme called Ratio Shift Keying (RSK), where the information is encoded in the concentration ratio of two different types of molecules. RSK modulation is hypothesized to enable accurate information transfer in dynamic MC scenarios where the time-varying channel characteristics affect both types of molecules equally. To validate this hypothesis, we first conduct an information-theoretical analysis of RSK modulation and derive the capacity of the end-to-end MC channel where the receiver estimates concentration ratio based on ligand-receptor binding statistics in an optimal or suboptimal manner. We then analyze the error performance of RSK modulation in a practical time-varying MC scenario, that is mobile MC, in which both the transmitter and the receiver undergo diffusion-based propagation. Our numerical and analytical results, obtained for varying levels of similarity between the ligand types used for ratio-encoding, and varying number of receptors, show that RSK can significantly outperform the most commonly considered MC modulation technique, concentration shift keying (CSK), in dynamic MC scenarios.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessGreen Submitted
dc.description.publisherscopeInternational
dc.description.sponsorsNo Statement Available
dc.description.volume23
dc.identifier.doi10.1109/TNB.2023.3298600
dc.identifier.eissn1558-2639
dc.identifier.issn1536-1241
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85165910032
dc.identifier.urihttps://doi.org/10.1109/TNB.2023.3298600
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22499
dc.identifier.wos1136804800011
dc.keywordsModulation
dc.keywordsReceivers
dc.keywordsTransmitters
dc.keywordsMolecular communication
dc.keywordsNanobioscience
dc.keywordsComputer architecture
dc.keywordsMaximum likelihood estimation
dc.keywordsMolecular communications
dc.keywordsModulation
dc.keywordsRatio shift keying
dc.keywordsConcentration shift keying
dc.keywordsChannel capacity
dc.keywordsMaximum likelihood estimation
dc.keywordsFisher information
dc.keywordsMobile molecular communications
dc.languageen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.grantnoEuropean Union's Horizon 2020 Research and Innovation Program through the Marie Sklstrok
dc.relation.grantnoodowska-Curie Individual Fellowship
dc.sourceIEEE Transactions on Nanobioscience
dc.subjectBiochemical research methods
dc.subjectNanoscience and nanotechnology
dc.titleRatio shift keying modulation for time-varying molecular communication channels
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorAraz, Mustafa Okan
local.contributor.kuauthorEmirdağı, Ahmet Rasim
local.contributor.kuauthorKopuzlu, Mahmut Serkan
local.contributor.kuauthorKuşcu, Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files