Publication:
Rechargeable afterglow nanotorches for in vivo tracing of cell-based microrobots

dc.contributor.coauthorMa, Gongcheng
dc.contributor.coauthorLiu, Zhongke
dc.contributor.coauthorJiang, Daoyong
dc.contributor.coauthorWang, Yue
dc.contributor.coauthorXiang, Chunbai
dc.contributor.coauthorZhang, Yuding
dc.contributor.coauthorLuo, Yuan
dc.contributor.coauthorGong, Ping
dc.contributor.coauthorCai, Lintao
dc.contributor.coauthorZhang, Pengfei
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorDırak, Musa
dc.contributor.kuauthorKölemen, Safacan
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-12-29T09:36:21Z
dc.date.issued2024
dc.description.abstractAs one of the self-luminescence imaging approaches that require pre-illumination instead of real-time light excitation, afterglow luminescence imaging has attracted increasing enthusiasm to circumvent tissue autofluorescence. In this work, we developed organic afterglow luminescent nanoprobe (nanotorch), which could emit persistent luminescence more than 10 days upon single light excitation. More importantly, the nanotorch could be remote charged by 660 nm light in a non-invasive manner, which showed great potential for real-time tracing the location of macrophage cell-based microrobots. A near-infrared (NIR) rechargeable nanotorch was devised for in vivo tracking of cell-based microrobots (MRs). The as-prepared nanotorch uses faPT, a methylene blue analog, as a NIR transducer, generating singlet oxygen that prompts the SA570, a modified version of Schaap's 1,2-dioxetane, to produce a 10-day-lasting afterglow. Once its glow fades, the nanotorch can be non-invasively recharged using 660 nm light, highlighting its potential for continuous in vivo MR tracking. image
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue18
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis work was partially supported by National Key R&D Programs (China) (2021YFA0910001, 2023YFA0915400), Guangdong Provincial Key Area R&D Program (2020B1111540001), the Shenzhen Science and Technology Program (KQTD20210811090115019), Shenzhen Basic Research (key project)(China)(JCYJ20210324120011030, JCYJ20210324115804013, JCYJ20220818101607016 and JCYJ20200109114616534), the Major Instrumentation Development Program of the Chinese Academy of Sciences (Project Number: ZDKYYQ20220008), the Guangdong Provincial Natural Science Foundation (2414050002188), Shenzhen-Macao Technology Plan (SGDX2020110309280301), the National Natural Science Foundation of China (22105057, 81901906, 32000982) and Technological Cooperation Projects (China) (2020A0505100047), Guangdong Basic and Applied Basic Research Fund Project (China) (2019A1515110222 and 2021A1515110699), Zhuhai Innovation and Entrepreneurship Team Project (ZH01110405180056PWC). All animal experiments were performed under the protocols approved by the Animal Care and Use Committee (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) (Serial number: SIAT-IACUC-210701-YYS-GP-A1974). SK acknowledges the use of the services and facilities of n2STAR-Koc University Nanofabrication and Nano-characterization Center for Scientific and Technological Advanced Research.
dc.description.volume63
dc.identifier.doi10.1002/anie.202400658
dc.identifier.eissn1521-3773
dc.identifier.issn1433-7851
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85188541893
dc.identifier.urihttps://doi.org/10.1002/anie.202400658
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22017
dc.identifier.wos1190389200001
dc.keywordsAfterglow
dc.keywordsPhotosensitizer
dc.keywordsChemiluminescence
dc.keywordsAggregation-induced emission
dc.keywordsCell-based microrobot
dc.language.isoeng
dc.publisherWiley-V C H Verlag Gmbh
dc.relation.grantnoNational Key R&D Programs (China) [2021YFA0910001, 2023YFA0915400]
dc.relation.grantnoGuangdong Provincial Key Area RD Program [2020B1111540001]
dc.relation.grantnoShenzhen Science and Technology Program [KQTD20210811090115019]
dc.relation.grantnoShenzhen Basic Research (key project)(China) [JCYJ20210324120011030, JCYJ20210324115804013, JCYJ20220818101607016, JCYJ20200109114616534]
dc.relation.grantnoMajor Instrumentation Development Program of the Chinese Academy of Sciences [ZDKYYQ20220008]
dc.relation.grantnoGuangdong Provincial Natural Science Foundation [2414050002188]
dc.relation.grantnoShenzhen-Macao Technology Plan [SGDX2020110309280301]
dc.relation.grantnoNational Natural Science Foundation of China [22105057, 81901906, 32000982]
dc.relation.grantnoTechnological Cooperation Projects (China) [2020A0505100047]
dc.relation.grantnoGuangdong Basic and Applied Basic Research Fund Project (China) [2019A1515110222, 2021A1515110699]
dc.relation.grantnoZhuhai Innovation and Entrepreneurship Team Project [ZH01110405180056PWC]
dc.relation.ispartofAngewandte Chemie-International Edition
dc.subjectChemistry
dc.titleRechargeable afterglow nanotorches for in vivo tracing of cell-based microrobots
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorDırak, Musa
local.contributor.kuauthorKölemen, Safacan
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemistry
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files