Publication:
Large language models as a rapid and objective tool for pathology report data extraction

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2024

Language

en

Type

Letter

Journal Title

Journal ISSN

Volume Title

Abstract

Medical institutions continuously create a substantial amount of data that is used for scientific research. One of the departments with a great amount of archived data is the pathology department. Pathology archives hold the potential to create a case series of valuable rare entities or large cohorts of common entities. The major problem in creation of these databases is data extraction which is still commonly done manually and is highly laborious and error prone. For these reasons, we offer using large language models to overcome these challenges. Ten pathology reports of selected resection specimens were retrieved from electronic archives of Ko & ccedil; University Hospital for the initial set. These reports were de-identified and uploaded to ChatGPT and Google Bard. Both algorithms were asked to turn the reports in a synoptic report format that is easy to export to a data editor such as Microsoft Excel or Google Sheets. Both programs created tables with Google Bard facilitating the creation of a spreadsheet from the data automatically. In conclusion, we propose the use of AI-assisted data extraction for academic research purposes, as it may enhance efficiency and precision compared to manual data entry.

Description

Source:

Türk Patoloji Dergisi- Turkish Journal of Pathology

Publisher:

Federation Turkish Pathology Soc.

Keywords:

Subject

Pathology

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details