Publication:
Chronically radiation-exposed survivor glioblastoma cells display poor response to Chk1 inhibition under hypoxia

Alternative Title

Abstract

Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naive glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naive and IR-Surv cells. However, IR-Surv cells' response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naive and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.

Source

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Subject

Biochemistry and molecular biology, Chemistry

Citation

Has Part

Source

International Journal of Molecular Sciences

Book Series Title

Edition

DOI

10.3390/ijms23137051

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

4

Views

2

Downloads

View PlumX Details