Publication: Predicting stimulated C-peptide in type 1 diabetes using machine learning: a web-based tool from the T1D exchange registry
| dc.contributor.coauthor | Saygılı, Emre Sedar | |
| dc.contributor.coauthor | Karakılıç, Ersen | |
| dc.contributor.department | KUH (Koç University Hospital) | |
| dc.contributor.kuauthor | Batman, Adnan | |
| dc.contributor.schoolcollegeinstitute | KUH (KOÇ UNIVERSITY HOSPITAL) | |
| dc.date.accessioned | 2025-12-31T08:23:25Z | |
| dc.date.available | 2025-12-31 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Aims: The mixed-meal tolerance test (MMTT), though considered the gold standard for evaluating residual beta-cell function in type 1 diabetes mellitus (T1D), is impractical for routine use. We aimed to develop and validate a machine learning (ML) model to predict MMTT-stimulated C-peptide categories using routine clinical data. Methods: Data from 319 individuals in the T1D Exchange Registry with complete MMTT and clinical information were analyzed. The cohort was randomly split into training (70%) and test (30%) sets. Five clinical variables—age at diagnosis, diabetes duration, HbA1c, non-fasting glucose, and non-fasting C-peptide—were selected via recursive feature elimination. Four ML algorithms (random forest [RF], XGBoost, LightGBM, and ordinal logistic regression) were trained with 10-fold cross-validation. Results: The RF model showed the highest performance: AUC 0.94 (95% CI: 0.92–0.96), sensitivity 0.84 (95% CI: 0.80–0.89), and specificity 0.92 (95% CI: 0.90–0.94) in cross-validation. In the test set, AUC was 0.97, sensitivity 88%, and specificity 94%. Notably, 17.7% of individuals with undetectable non-fasting C-peptide had measurable levels after MMTT. Conclusions: This ML model provides a practical, non-invasive tool for estimating beta-cell function in T1D and is available online at https://cpeptide.streamlit.app. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | Scopus | |
| dc.description.indexedby | PubMed | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | N/A | |
| dc.identifier.doi | 10.1016/j.diabres.2025.112453 | |
| dc.identifier.eissn | 1872-8227 | |
| dc.identifier.embargo | No | |
| dc.identifier.issn | 0168-8227 | |
| dc.identifier.pubmed | 40914229 | |
| dc.identifier.quartile | Q1 | |
| dc.identifier.scopus | 2-s2.0-105016007170 | |
| dc.identifier.uri | https://doi.org/10.1016/j.diabres.2025.112453 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/31728 | |
| dc.identifier.volume | 229 | |
| dc.identifier.wos | 001574030100001 | |
| dc.keywords | Beta-cell function | |
| dc.keywords | C-peptide | |
| dc.keywords | Clinical decision support systems | |
| dc.keywords | Machine learning | |
| dc.keywords | Mixed-meal tolerance test | |
| dc.keywords | Type 1 diabetes mellitus | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier Ireland Ltd | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Diabetes Research and Clinical Practice | |
| dc.relation.openaccess | Yes | |
| dc.rights | CC BY-NC-ND (Attribution-NonCommercial-NoDerivs) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Endocrinology | |
| dc.subject | Metabolism | |
| dc.title | Predicting stimulated C-peptide in type 1 diabetes using machine learning: a web-based tool from the T1D exchange registry | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| person.familyName | Batman | |
| person.givenName | Adnan | |
| relation.isOrgUnitOfPublication | f91d21f0-6b13-46ce-939a-db68e4c8d2ab | |
| relation.isOrgUnitOfPublication.latestForDiscovery | f91d21f0-6b13-46ce-939a-db68e4c8d2ab | |
| relation.isParentOrgUnitOfPublication | 055775c9-9efe-43ec-814f-f6d771fa6dee | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 055775c9-9efe-43ec-814f-f6d771fa6dee |
