Publication:
Predicting stimulated C-peptide in type 1 diabetes using machine learning: a web-based tool from the T1D exchange registry

dc.contributor.coauthorSaygılı, Emre Sedar
dc.contributor.coauthorKarakılıç, Ersen
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.kuauthorBatman, Adnan
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.date.accessioned2025-12-31T08:23:25Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractAims: The mixed-meal tolerance test (MMTT), though considered the gold standard for evaluating residual beta-cell function in type 1 diabetes mellitus (T1D), is impractical for routine use. We aimed to develop and validate a machine learning (ML) model to predict MMTT-stimulated C-peptide categories using routine clinical data. Methods: Data from 319 individuals in the T1D Exchange Registry with complete MMTT and clinical information were analyzed. The cohort was randomly split into training (70%) and test (30%) sets. Five clinical variables—age at diagnosis, diabetes duration, HbA1c, non-fasting glucose, and non-fasting C-peptide—were selected via recursive feature elimination. Four ML algorithms (random forest [RF], XGBoost, LightGBM, and ordinal logistic regression) were trained with 10-fold cross-validation. Results: The RF model showed the highest performance: AUC 0.94 (95% CI: 0.92–0.96), sensitivity 0.84 (95% CI: 0.80–0.89), and specificity 0.92 (95% CI: 0.90–0.94) in cross-validation. In the test set, AUC was 0.97, sensitivity 88%, and specificity 94%. Notably, 17.7% of individuals with undetectable non-fasting C-peptide had measurable levels after MMTT. Conclusions: This ML model provides a practical, non-invasive tool for estimating beta-cell function in T1D and is available online at https://cpeptide.streamlit.app.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1016/j.diabres.2025.112453
dc.identifier.eissn1872-8227
dc.identifier.embargoNo
dc.identifier.issn0168-8227
dc.identifier.pubmed40914229
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105016007170
dc.identifier.urihttps://doi.org/10.1016/j.diabres.2025.112453
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31728
dc.identifier.volume229
dc.identifier.wos001574030100001
dc.keywordsBeta-cell function
dc.keywordsC-peptide
dc.keywordsClinical decision support systems
dc.keywordsMachine learning
dc.keywordsMixed-meal tolerance test
dc.keywordsType 1 diabetes mellitus
dc.language.isoeng
dc.publisherElsevier Ireland Ltd
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofDiabetes Research and Clinical Practice
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEndocrinology
dc.subjectMetabolism
dc.titlePredicting stimulated C-peptide in type 1 diabetes using machine learning: a web-based tool from the T1D exchange registry
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameBatman
person.givenNameAdnan
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files