Publication:
Training socially engaging robots: modeling backchannel behaviors with batch reinforcement learning

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorHussain, Nusrah
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.contributor.yokid18632
dc.contributor.yokid107907
dc.date.accessioned2024-11-09T11:44:14Z
dc.date.issued2022
dc.description.abstractA key aspect of social human-robot interaction is natural non-verbal communication. In this work, we train an agent with batch reinforcement learning to generate nods and smiles as backchannels in order to increase the naturalness of the interaction and to engage humans. We introduce the Sequential Random Deep Q-Network (SRDQN) method to learn a policy for backchannel generation, that explicitly maximizes user engagement. The proposed SRDQN method outperforms the existing vanilla Q-learning methods when evaluated using off-policy policy evaluation techniques. Furthermore, to verify the effectiveness of SRDQN, a human-robot experiment has been designed and conducted with an expressive 3d robot head. The experiment is based on a story-shaping game designed to create an interactive social activity with the robot. The engagement of the participants during the interaction is computed from user's social signals like backchannels, mutual gaze and adjacency pair. The subjective feedback from participants and the engagement values strongly indicate that our framework is a step forward towards the autonomous learning of a socially acceptable backchanneling behavior.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipHigher Education Commission (HEC) Pakistan
dc.description.versionAuthor's final manuscript
dc.description.volume13
dc.formatpdf
dc.identifier.doi10.1109/TAFFC.2022.3190233
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03950
dc.identifier.issn1949-3045
dc.identifier.linkhttps://doi.org/10.1109/TAFFC.2022.3190233
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85134249481
dc.identifier.urihttps://hdl.handle.net/20.500.14288/398
dc.identifier.wos892948500012
dc.keywordsHuman-robot interaction
dc.keywordsUser engagement
dc.keywordsBackchannels
dc.keywordsBatch reinforcement learning
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno2.17E+42
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10817
dc.sourceTransactions on Affective Computing
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectCybernetics
dc.titleTraining socially engaging robots: modeling backchannel behaviors with batch reinforcement learning
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-1524-1646
local.contributor.authorid0000-0002-7515-3138
local.contributor.kuauthorHussain, Nusrah
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorSezgin, Tevfik Metin
local.contributor.kuauthorYemez, Yücel
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10817.pdf
Size:
6.61 MB
Format:
Adobe Portable Document Format