Publication:
Utilizing machine learning to predict tensile ductility and yield strength of CoNiV-based multi-principal elements alloys

dc.contributor.coauthorOzdemir, H. C.
dc.contributor.coauthorCanadinc, D.
dc.contributor.coauthorEl Atwani, O.
dc.contributor.coauthorValdez, J.
dc.contributor.coauthorLovato, B.
dc.contributor.coauthorMathews, C.
dc.contributor.coauthorWanni, J.
dc.contributor.coauthorCooley, J.
dc.contributor.coauthorFensin, S. J.
dc.date.accessioned2025-12-31T08:25:27Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractThis study explores the use of machine learning (ML) as a computational tool to accelerate the design of multiprincipal element alloys (MPEAs) with improved tensile elongation. An ML model was trained using available experimental data from the literature along with theoretically derived features to predict yield strength (YS) and ductility. A subset of ML-predicted compositions-CoNiVFe, CoNiVTi, CoNiVTiFe, and CoCrNiVTi-was synthesized and evaluated through tensile testing. The ML model underpredicted YS by approximately 20-30 % and overpredicted ductility by 60-70 % for Ti-containing alloys. Microstructural analysis revealed that Ti segregation at interdendritic regions contributed to early fracture, leading to discrepancies in ductility predictions. Ti segregation at these regions likely drives the increased YS due to segregation strengthening. In contrast, the CoNiVFe alloy showed good agreement with both experimental YS and elongation, with prediction errors of similar to 10.2 % and similar to 20.7 %, respectively. Microstructural characterization revealed minimal segregation in this alloy, suggesting that the ML model can reliably predict the properties of alloys with little to no segregation. These findings highlight the capability of ML in predicting YS with good accuracy but underscore its limitations in capturing defect-driven failure mechanisms such as segregation-induced embrittlement.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipU.S. Department of Energy through the Los Alamos National Laboratory; National Nuclear Security Administration of the U.S. Department of Energy [89233218CNA000001]
dc.identifier.doi10.1016/j.matdes.2025.114434
dc.identifier.eissn1873-4197
dc.identifier.embargoNo
dc.identifier.issn0264-1275
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105011263650
dc.identifier.urihttps://doi.org/10.1016/j.matdes.2025.114434
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31868
dc.identifier.volume257
dc.identifier.wos001541352400001
dc.keywordsMachine learning
dc.keywordsMulti-principal element alloys
dc.keywordsAlloy design
dc.keywordsMicrostructure
dc.keywordsMechanical properties
dc.language.isoeng
dc.publisherELSEVIER SCI LTD
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofMATERIALS & DESIGN
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectMaterials Science
dc.titleUtilizing machine learning to predict tensile ductility and yield strength of CoNiV-based multi-principal elements alloys
dc.typeJournal Article
dspace.entity.typePublication

Files