Publication:
A subspace framework for L ∞ model reduction

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMengi, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-05-22T10:36:19Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractWe propose an approach for the L infinity ${\mathcal{L}}_{\infty }$ model reduction of descriptor systems based on the minimization of the L infinity ${\mathcal{L}}_{\infty }$ objective by means of smooth optimization techniques. Direct applications of smooth optimization techniques are not feasible even for systems of modest order, since the optimization techniques converge at best at a linear rate requiring too many evaluations of the costly L infinity ${\mathcal{L}}_{\infty }$ -norm objective to be practical. We replace the original system with a system of smaller order interpolating the original system at points on the imaginary axis, minimize the L infinity ${\mathcal{L}}_{\infty }$ objective after this replacement, and refine the smaller system based on the minimization. We also describe how asymptotic stability constraints on the reduced system sought can be incorporated into our approach. The numerical experiments illustrate that the approach leads to locally optimal solutions to the L infinity ${\mathcal{L}}_{\infty }$ model reduction problem, and its capability to deal with systems of order a few ten thousands.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeN/A
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1515/jnma-2023-0115
dc.identifier.eissn1569-3953
dc.identifier.embargoNo
dc.identifier.issn1570-2820
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1515/jnma-2023-0115
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29565
dc.identifier.wos001396132700001
dc.keywordsH ∞ model reduction
dc.keywordsdescriptor system
dc.keywordsquasi-Newton methods
dc.keywordsPetrov-Galerkin projection
dc.keywordsHermite interpolation
dc.language.isoeng
dc.publisherWALTER DE GRUYTER GMBH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofJournal of numerical mathematics
dc.subjectMathematics
dc.titleA subspace framework for L ∞ model reduction
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameMengi
person.givenNameEmre
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files