Publication:
Intrinsic mechanical behavior of MgAgSb thermoelectric material: an ab initio study

dc.contributor.coauthorLi, Guodong
dc.contributor.coauthorAn, Qi
dc.contributor.coauthorMorozov, Sergey I.
dc.contributor.coauthorDuan, Bo
dc.contributor.coauthorZhai, Pengcheng
dc.contributor.coauthorZhang, Qingjie
dc.contributor.coauthorGoddard, William A.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorAydemir, Umut
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:28:27Z
dc.date.issued2020
dc.description.abstractα-MgAgSb based thermoelectric (TE) device attracts much attention for its commercial application because it shows an extremely high conversion efficiency of ∼8.5% under a temperature difference of 225 K. However, the mechanical behavior of α-MgAgSb is another serious consideration for its engineering applications. Here, we apply density functional theory (DFT) simulations to examine the intrinsic mechanical properties of all three MgAgSb phases, including elastic properties, shear-stress – shear-strain relationships, deformation and failure mechanism under ideal shear and biaxial shear conditions. We find that the ideal shear strength of α-MgAgSb is 3.25 GPa along the most plausible (100)<010> slip system. This strength is higher than that of β-MgAgSb (0.80 GPa) and lower than that of γ-MgAgSb (3.43 GPa). The failure of α-MgAgSb arises from the stretching and breakage of Mg[sbnd]Sb bond α-MgAgSb under pure shear load, while it arises from the softening of Mg[sbnd]Ag bond and the breakage of Ag[sbnd]Sb bond under biaxial shear load. This suggests that the deformation mechanism changes significantly under different loading conditions.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNSFC
dc.description.sponsorshipFundamental Research Funds for the Central Universities
dc.description.sponsorshipAct 211 Government of the Russian Federation
dc.description.sponsorshipSupercomputer Simulation Laboratory of South Ural State University
dc.description.versionPublisher version
dc.description.volume6
dc.identifier.doi10.1016/j.jmat.2019.11.002
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01973
dc.identifier.issn2352-8478
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85075262289
dc.identifier.urihttps://doi.org/10.1016/j.jmat.2019.11.002
dc.keywordsThermoelectricity
dc.keywordsThermoelectric equipment
dc.keywordsThermoelectric material
dc.language.isoeng
dc.publisherChinese Ceramic Society
dc.relation.grantno51972253
dc.relation.grantnoWUT: 2019IVA055, 2019IB006, 2019III208
dc.relation.grantno02.A03.21.0011
dc.relation.ispartofJournal of Materiomics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8602
dc.subjectChemistry
dc.titleIntrinsic mechanical behavior of MgAgSb thermoelectric material: an ab initio study
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAydemir, Umut
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemistry
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8602.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format