Publication: Electrochemiluminescent immunosensor for detection of carcinoembryonic antigen using luminol-coated silver nanoparticles
dc.contributor.coauthor | Khalilzadeh, Balal | |
dc.contributor.coauthor | Afsharan, Hadi | |
dc.contributor.coauthor | Hosseini, Nashmin | |
dc.contributor.coauthor | Ghahremani, Mohammad Hossein | |
dc.contributor.coauthor | Carrara, Sandro | |
dc.contributor.coauthor | Omidi, Yadollah | |
dc.contributor.department | N/A | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.kuauthor | Nakhjavani, Sattar Akbar | |
dc.contributor.kuauthor | Taşoğlu, Savaş | |
dc.contributor.kuprofile | Researcher | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mechanical Engineering | |
dc.contributor.researchcenter | Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM) | |
dc.contributor.schoolcollegeinstitute | N/A | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | 291971 | |
dc.date.accessioned | 2024-11-09T23:00:37Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Recently, electrochemiluminescent (ECL) immunosensors have received much attention in the field of biomarker detection. Here, a highly enhanced ECL immunosensing platform was designed for ultrasensitive detection of carcinoembryonic antigen (CEA). The surface of the glassy carbon electrode was enhanced by applying functional nanostructures such as thiolated graphene oxide (S-GO) and streptavidin-coated gold nanoparticles (SA-AuNPs). The selectivity and sensitivity of the designed immunosensor were improved by entrapping CEA biomolecules using a sandwich approach. Luminol/silver nanoparticles (Lu-SNPs) were applied as the main core of the signaling probe, which were then coated with streptavidin to provide overloading of the secondary antibody. The highly ECL signal enhancement was obtained due to the presence of horseradish peroxidase (HRP) in the signaling probe, in which the presence of H2O2 further amplified the intensity of the signals. The engineered immunosensor presented excellent sensitivity for CEA detection, with limit of detection (LOD) and linear detection range (LDR) values of 58 fg mL−1 and 0.1 pg mL−1 to 5 pg mL−1 (R2 = 0.9944), respectively. Besides its sensitivity, the fabricated ECL immunosensor presented outstanding selectivity for the detection of CEA in the presence of various similar agents. Additionally, the developed immunosensor showed an appropriate repeatability (RSD 3.8%) and proper stability (2 weeks). Having indicated a robust performance in the real human serum with stated LOD and LDR, the engineered immunosensor can be considered for the detection and monitoring of CEA in the clinic. Graphical Abstract: [Figure not available: see fulltext.]. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | This work was supported by the Tehran University of Medical Sciences (TUMS) (grant number 94–03-103–29923) and TUBITAK2232 International Fellowship for Outstanding Researchers Award (118C391). Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the TÜBİTAK. | |
dc.description.volume | 190 | |
dc.identifier.doi | 10.1007/s00604-023-05656-8 | |
dc.identifier.issn | 0026-3672 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146978371&doi=10.1007%2fs00604-023-05656-8&partnerID=40&md5=0b00fe10b29601ba454726d8a72e62e7 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85146978371 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s00604-023-05656-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/8082 | |
dc.identifier.wos | 923923900001 | |
dc.keywords | Biosensor | |
dc.keywords | Breast cancer | |
dc.keywords | Electrochemiluminescence | |
dc.keywords | Immunosensor | |
dc.keywords | Bio-nanocomposite | |
dc.language | English | |
dc.publisher | Springer | |
dc.source | Microchimica Acta | |
dc.subject | Analytical chemistry | |
dc.title | Electrochemiluminescent immunosensor for detection of carcinoembryonic antigen using luminol-coated silver nanoparticles | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.authorid | 0000-0003-4604-217X | |
local.contributor.kuauthor | Nakhjavani, Sattar Akbar | |
local.contributor.kuauthor | Taşoğlu, Savaş | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 |