Publication:
Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures

dc.contributor.coauthorAltıntaş, Çiğdem
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid40548
dc.date.accessioned2024-11-09T11:40:07Z
dc.date.issued2017
dc.description.abstractMetal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C2H6. Considering the large number of available MOFs, it is not possible to fabricate and test the C2H6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C2H6/C2H4 and C2H6/CH4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C2H6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C2H6/C2H4 and C2H6/CH4 mixtures. Our results show that a significant number of MOF membranes are C2H6 selective for C2H6/C2H4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure–performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 A, porosities lower than 0.50, and surface areas between 500–1000 m2 g 1 have high C2H6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C2H6 and to accelerate the development of new MOFs with high C2H6 selectivities.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue82
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipERC-2017-Starting Grant
dc.description.versionPublisher version
dc.description.volume7
dc.formatpdf
dc.identifier.doi10.1039/C7RA11562H
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01292
dc.identifier.issn2046-2069
dc.identifier.linkhttps://doi.org/10.1039/C7RA11562H
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85034241592
dc.identifier.urihttps://hdl.handle.net/20.500.14288/197
dc.identifier.wos415116800067
dc.keywordsCrystalline materials
dc.keywordsEthane
dc.keywordsGas permeability
dc.keywordsMembranes
dc.keywordsMixtures
dc.keywordsMolecular sieves
dc.keywordsMolecular structure
dc.keywordsOrganic polymers
dc.keywordsOrganometallics
dc.keywordsPolymers
dc.keywordsPorous materials
dc.keywordsSeparation
dc.keywordsSieves
dc.keywordsZeolites
dc.languageEnglish
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.grantno756489
dc.relation.grantnoCOSMOS
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/2828
dc.sourceRSC Advances
dc.subjectChemistry
dc.titleMolecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5968-0336
local.contributor.kuauthorKeskin, Seda
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2828.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format