Publication:
Adaptive control of self-balancing two-wheeled robot system based on online model estimation

dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.kuauthorZad, Haris Sheh
dc.contributor.kuauthorUlasyar, Abasin
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileResearcher
dc.contributor.researchcenterN/A
dc.contributor.researchcenterManufacturing and Automation Research Center (MARC)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:02:53Z
dc.date.issued2018
dc.description.abstractIn this article, an adaptive model predictive controller (MPC) is designed for the position control of the self-balancing two-wheeled robot system. The system future output is optimized using the MPC controller by computing the manipulated variable trajectory. Traditional MPC uses a Linear-Time-Invariant (LTI) dynamic model of the system for the prediction of future behavior. The model of the self-balancing two-wheeled robot system is strongly nonlinear which degrades the prediction accuracy of the traditional MPC controller. Therefore, an adaptive MPC controller is designed based on linear-time-varying Kalman filter which online tunes and updates the estimated system parameters and accordingly produces the control effort in the presence of the input/output and state constraints. The performance of the proposed controller is compared with the traditional MPC controller and PID controller. The results show improved reference tracking and better stability for the proposed adaptive MPC controller as compared to traditional MPC and PID controller.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume2018-January
dc.identifier.doiN/A
dc.identifier.isbn9786-0501-0737-1
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85046299002&partnerID=40&md5=7dbf2154329c7f395a138d0b4e7ce4b3
dc.identifier.scopus2-s2.0-85046299002
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16229
dc.identifier.wos426978800154
dc.keywordsControl system analysis
dc.keywordsControllers
dc.keywordsElectric control equipment
dc.keywordsPosition control
dc.keywordsPredictive control systems
dc.keywordsProportional control systems
dc.keywordsRobots
dc.keywordsThree term control systems
dc.keywordsAdaptive model predictive controllers
dc.keywordsLinear time invariant
dc.keywordsLinear time varying
dc.keywordsManipulated variables
dc.keywordsPrediction accuracy
dc.keywordsReference-tracking
dc.keywordsStrongly nonlinear
dc.keywordsTwo wheeled robots
dc.keywordsAdaptive control systems
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2017 10th International Conference on Electrical and Electronics Engineering, ELECO 2017
dc.subjectElectrical electronics engineering
dc.titleAdaptive control of self-balancing two-wheeled robot system based on online model estimation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-4291-288X
local.contributor.authorid0000-0003-3258-7064
local.contributor.kuauthorZad, Haris Sheh
local.contributor.kuauthorUlasyar, Abasin

Files