Publication:
Experimental and numerical study for determining the mechanical properties of automobile weatherstrip seals

dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorBaşdoğan, İpek
dc.contributor.kuauthorDikmen, Emre
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:18:01Z
dc.date.issued2006
dc.description.abstractStructural parts made of hyperelastic materials such as rubber mounts in automotive powertrains and weatherstrip seals are widely used in automotive and other engineering applications. In this study, compression load deflection (CLD) behavior of a highly non-linear type of joint, automotive weatherstrip seal made of Ethylene Propylene Diene Monomer (EPDM) sponge rubber is examined using finite element modeling techniques. The finite element modeling (FEM) results are then compared with the compression load deflection data obtained experimentally. The compression load deflection data for various punch velocities can be used to model the weatherstrip seal as a nonlinear spring-dashpot system with varying stiffness and damping coefficient proportional to the amount of compression. The weatherstrip seals should be modeled accurately in order to predict the dynamic performance of the automobiles under various load conditions. First part of the study includes modeling of the seal using various hyperelastic material models which are available in ANSYS. The strain energy functions' coefficients required for the various material models are calculated using both linear and nonlinear least square fit procedures implemented in ANSYS for fitting the tension, shear and compression test data. After the coefficients are calculated, the compression test is performed in ANSYS using various hyperelastic material models. Second part of the study includes the compression experiment of weatherstrip seal with a robotic indenter specifically designed for measuring hyperelastic materials. The measured CLD data is then compared with the FEM results. The accuracy of using only simple tension test data to acquire the coefficients for strain energy functions is investigated and suitable strain energy functions to model compression of weatherstrip seal are determined. Additionally, Mullins Effect (stress softening) for this application is investigated using the compression experiments data.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.isbn978-0-7918-4248-5
dc.identifier.scopus2-s2.0-33845734703
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10308
dc.identifier.wos249557200048
dc.language.isoeng
dc.publisherAmer Soc Mechanical Engineers
dc.relation.ispartofProceedings Of The 8th Biennial Conference On Engineering Systems Design And Analysis, Vol 1
dc.subjectAcoustics
dc.subjectEngineering
dc.subjectManufacturing engineering
dc.subjectMechanical engineering
dc.subjectRobotics
dc.titleExperimental and numerical study for determining the mechanical properties of automobile weatherstrip seals
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorDikmen, Emre
local.contributor.kuauthorBaşdoğan, İpek
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files