Publication:
On identifiable polytope characterization for polytopic matrix factorization

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuauthorBozkurt, Barışcan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid41624
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:28:32Z
dc.date.issued2022
dc.description.abstractPolytopic matrix factorization (PMF) is a recently introduced matrix decomposition method in which the data vectors are modeled as linear transformations of samples from a polytope. The successful recovery of the original factors in the generative PMF model is conditioned on the”identifiability” of the chosen polytope. In this article, we investigate the problem of determining the identifiability of a polytope. The identifiability condition requires the polytope to be permutation- and/or-sign-only invariant. We show how this problem can be efficiently solved by using a graph automorphism algorithm. In particular, we show that checking only the generating set of the linear automorphism group of a polytope, which corresponds to the automorphism group of an edge-colored complete graph, is sufficient. This property prevents checking all the elements of the permutation group, which requires factorial algorithm complexity. We demonstrate the feasibility of the proposed approach through some numerical experiments.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis work is partially supported by an AI Fellowship provided by the KUIS AI Lab.
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/ICASSP43922.2022.9746370
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03837
dc.identifier.isbn9.78167E+12
dc.identifier.issn1520-6149
dc.identifier.linkhttps://doi.org/10.1109/ICASSP43922.2022.9746370
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85131241576
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1813
dc.identifier.wos864187903126
dc.keywordsGraph automorphism
dc.keywordsGroup theory
dc.keywordsLinear automorphism group
dc.keywordsPolytope symmetries
dc.keywordsPolytopic matrix factorization
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10695
dc.sourceICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
dc.subjectEngineering
dc.titleOn identifiable polytope characterization for polytopic matrix factorization
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.authoridN/A
local.contributor.kuauthorErdoğan, Alper Tunga
local.contributor.kuauthorBozkurt, Barışcan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10695.pdf
Size:
3.99 MB
Format:
Adobe Portable Document Format