Publication:
Pd thickness optimization on silicate sheets for improving catalytic activity

dc.contributor.coauthorTsunoji, Nao
dc.contributor.coauthorAssadi, M. Hussein N.
dc.contributor.coauthorIde, Yusuke
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.kuauthorDoustkhah, Esmail
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-09T22:56:13Z
dc.date.issued2023
dc.description.abstractMaximizing surface-to-body ratio demands ever smaller metallic palladium (Pd) nanoparticles for catalytic applications. The quest for miniaturization is now reaching the single-atom limit. However, if the supported Pd is below a critical size, the Pd hybridization with the supporting material can detrimentally reduce the labile electrons that facilitate the catalytic reactions. Thus, the smallest attainable size, i.e., single-atom Pd, may not offer the best efficiency. Here, it is demonstrated that Pd with at least six atomic layers (or thickness of approximate to 1 nm) on the silicate sheets, synthesized via the partial exfoliation of a layered silicate, exhibits a metallic-like electronic property, yielding an excellent catalytic activity (e.g., turnover frequency) for dehydrogenating formic acid higher than both isotropic Pd nanoparticles and single-atom Pd.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipJSPS KAKENHI [21F20040, 21H02034]
dc.description.sponsorshipBrain Circulation Program [120C057]
dc.description.sponsorshipPaderborn Center for Parallel Computing (PC2)
dc.description.sponsorshipTUEBITAK
dc.description.sponsorshipHorizon-2020 Marie Sklodowska Curie This work was supported by the JSPS KAKENHI (grant Nos. 21F20040 and 21H02034). Moreover, the authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC2). E.D. also acknowledges the TUEBITAK and Horizon-2020 Marie Sklodowska Curie for providing financial support in Co-Funded Brain Circulation Program (Project No. 120C057) framework.
dc.description.volume10
dc.identifier.doi10.1002/admi.202202368
dc.identifier.issn2196-7350
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85146362760
dc.identifier.urihttps://doi.org/10.1002/admi.202202368
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7340
dc.identifier.wos913716500001
dc.keywordsDensity functional theory
dc.keywordsElectronic localization function
dc.keywordsH-2 production
dc.keywordsLayered silicate
dc.keywordsPalladium nanoparticle
dc.keywordsFormic-acid
dc.keywordsElectron localization
dc.keywordsNanoparticles
dc.keywordsHydrogen
dc.keywordsDehydrogenation
dc.keywordsNanocrystals
dc.keywordsActivation
dc.keywordsGeneration
dc.keywordsTitanium
dc.keywordsDensity
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofAdvanced Materials Interfaces
dc.subjectChemistry
dc.subjectMaterials science
dc.titlePd thickness optimization on silicate sheets for improving catalytic activity
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorDoustkhah, Esmail
local.publication.orgunit1College of Sciences
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Chemistry
local.publication.orgunit2KUTEM (Koç University Tüpraş Energy Center)
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04311.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format