Publication:
Quantum mechanics of a photon

dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorBabaei, Hassan
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokid4231
dc.date.accessioned2024-11-09T13:20:47Z
dc.date.issued2017
dc.description.abstractA first-quantized free photon is a complex massless vector field A = (A(mu)) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H, determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.
dc.description.fulltextYES
dc.description.indexedbyN/A
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)
dc.description.versionPublisher version
dc.description.volume58
dc.formatpdf
dc.identifier.doi10.1063/1.4999847
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01273
dc.identifier.issn1089-7658
dc.identifier.linkhttps://doi.org/10.1063/1.4999847
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85028561149
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3230
dc.keywordsGeneralized pt-symmetry
dc.keywordsKlein-Gordon fields
dc.keywordsPseudo-hermiticity
dc.keywordsPosition-operator
dc.keywordsWave-functions
dc.keywordsHilbert-space
dc.keywordsCpt-symmetry
dc.keywordsLocalizability
dc.keywordsLocalization
dc.keywordsParticles
dc.languageEnglish
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/7472
dc.sourceJournal of Mathematical Physics
dc.subjectMathematical physics
dc.titleQuantum mechanics of a photon
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-0739-4060
local.contributor.kuauthorBabaei, Hassan
local.contributor.kuauthorMostafazadeh, Ali
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
7472.pdf
Size:
554.11 KB
Format:
Adobe Portable Document Format