Publication:
A machine learning approach for marginal fulfillment cost estimation in last mile delivery

dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorNalbant, Ali
dc.contributor.kuauthorYıldız, Barış
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-08-12T12:10:36Z
dc.date.available2025-08-12
dc.date.issued2025-07-01
dc.description.abstractDetermining marginal fulfillment costs (MFC) is crucial for effective decision-making in online grocery retail, a sector struggling with small profit margins and arduous service requirements of attended home deliveries. Paramount to improving operational efficiency, e-grocers need accurate real-time MFC estimations to optimize their service offers and prices for online customers. Traditional methods for estimating MFC are either too slow for online decision-making or inaccurate. This paper introduces a novel machine learning (ML) approach that provides fast and accurate MFC estimations with the help of carefully engineered features (predictors) that can capture complex routing dynamics. Experiments with real-world data demonstrate the superiority of the proposed approach over state-of-the-art MFC estimation methods. Our analysis of more than 2000 potential predictors, from which 20 are curated for practical applicability, reveals critical insights into the use of network-level, neighborhood-based, and node-level features in capturing complex VRP dynamics to develop ML-based approaches to address problems that arise in different transportation applications.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGreen OA
dc.description.peerreviewstatusPeer-Reviewed
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.versionPost-print
dc.identifier.doi10.1016/j.trc.2025.105163
dc.identifier.eissn1879-2359
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR05933
dc.identifier.grantno101076231
dc.identifier.issn0968-090X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105009342941
dc.identifier.urihttps://doi.org/10.1016/j.trc.2025.105163
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30011
dc.identifier.volume178
dc.identifier.wos001524173000002
dc.keywordsCrowdshipping
dc.keywordsDemand management
dc.keywordsE-grocery
dc.keywordsFeature engineering
dc.keywordsLast-mile delivery
dc.keywordsMachine learning
dc.keywordsMarginal fulfillment cost
dc.keywordsComplex networks
dc.keywordsCost engineering
dc.keywordsCost estimating
dc.keywordsDecision making
dc.keywordsConsumption behavior
dc.keywordsElectronic commerce
dc.keywordsInformation and communication technology
dc.keywordsTransportation system
dc.keywordsLearning systems
dc.language.isoeng
dc.publisherElsevier
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofTransportation Research Part C: Emerging Technologies
dc.relation.openaccessYes
dc.relation.projectA New Perspective on City Logistics: Concepts, Theory, and Models for Designing and Managing Logistics as a Service
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectTransportation
dc.titleA machine learning approach for marginal fulfillment cost estimation in last mile delivery
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43
relation.isProjectOfPublication4a4dcae1-6c73-44e3-b970-bc079a6216bc
relation.isProjectOfPublication.latestForDiscovery4a4dcae1-6c73-44e3-b970-bc079a6216bc

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05933.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format