Publication:
Thin film rare earth iron garnets with perpendicular magnetic anisotropy for spintronic applications

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorZanjani, Saeedeh Mokarian
dc.contributor.kuauthorOnbaşlı, Mehmet Cengiz
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid258783
dc.date.accessioned2024-11-09T12:19:16Z
dc.date.issued2019
dc.description.abstractPerpendicular magnetic anisotropy (PMA) in garnet thin films is important for achieving numerous spintronic applications including spin-orbit switching. In this study, we computationally investigated how to control PMA by tuning substrate strain in Holmium Iron Garnet (HoIG) films grown on five different (111) single crystal garnet substrates of Gadolinium Gallium Garnet (GGG, Gd3Ga5O12), Yttrium Aluminum Garnet (YAG, Y3Al5O12), Terbium Gallium Garnet (TGG, Tb3Ga5O12), Substituted Gadolinium Gallium Garnet (sGGG, Gd3Sc2Ga3O12), and Neodymium Gallium Garnet (NGG, Nd3Ga5O12). The negative sign of effective anisotropy energy density, K-eff < 0, and anisotropy field, H-a < 0, determines the easy magnetization axis of the film to be perpendicular to the film surface. Here, we show that magnetoelastic anisotropy energy density determines the sign of the total anisotropy and it can be manipulated by altering the lattice parameter mismatch of the film and its substrate. Based on this study, HoIG is predicted to have PMA when grown on GGG, TGG and YAG among all five substrates mentioned. Moreover, the saturation field magnitude is calculated as an order of several hundreds of Oersteds, which is feasible in practical applications to saturate rare earth iron garnets with perpendicular magnetic anisotropy.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.description.volume9
dc.formatpdf
dc.identifier.doi10.1063/1.5079738
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01687
dc.identifier.issn2158-3226
dc.identifier.linkhttps://doi.org/10.1063/1.5079738
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85063058956
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1487
dc.identifier.wos462880300025
dc.languageEnglish
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.grantno117F416
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8301
dc.sourceAIP Advances
dc.subjectScience and technology
dc.subjectMaterials science
dc.subjectPhysics
dc.titleThin film rare earth iron garnets with perpendicular magnetic anisotropy for spintronic applications
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-3554-7810
local.contributor.kuauthorZanjani, Saeedeh Mokarian
local.contributor.kuauthorOnbaşlı, Mehmet Cengiz
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8301.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format