Publication:
Classification of pharynx from MRI using a visual analysis tool to study obstructive sleep apnea

dc.contributor.coauthorShahid, Muhammad Laiq Ur Rahman
dc.contributor.coauthorMir, Junaid
dc.contributor.coauthorShaukat, Furqan
dc.contributor.coauthorTariq, Muhammad Atiq Ur Rehman
dc.contributor.coauthorNouman, Ahmed
dc.contributor.kuauthorSaleem, Muhammad Khurram
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:42:55Z
dc.date.issued2021
dc.description.abstractBackground: Obstructive sleep apnea (OSA) is a chronic sleeping disorder. The analysis of the pharynx and its surrounding tissues can play a vital role in understanding the pathogenesis of OSA. Classification of the pharynx is a crucial step in the analysis of OSA. Methods: A visual analysis-based classifier is developed to classify the pharynx from MRI datasets. The classification pipeline consists of different stages, including pre-processing to select the initial candidates, extraction of categorical and numerical features to form a multidimensional features space, and a supervised classifier trained by using visual analytics and silhouette coefficient to classify the pharynx. Results: The pharynx is classified automatically and gives an approximately 86% Jaccard coefficient by evaluating the classifier on different MRI datasets. The expert's knowledge can be utilized to select the optimal features and their corresponding weights during the training phase of the classifier. Conclusion: The proposed classifier is accurate and more efficient in terms of computational cost. It provides additional insight to better understand the influence of different features individually and collectively. It finds its applications in epidemiological studies where large datasets need to be analyzed.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue5
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume17
dc.identifier.doi10.2174/1573405616666201118143935
dc.identifier.eissn1875-6603
dc.identifier.issn1573-4056
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85108304134
dc.identifier.urihttp://dx.doi.org/10.2174/1573405616666201118143935
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13404
dc.identifier.wos669954300006
dc.keywordsMachine learning algorithm
dc.keywordsMedical image analysis
dc.keywordsClassification
dc.keywordsMRI
dc.keywordsVisual analysis
dc.keywordsMultidimensional feature space
dc.keywordsOSA segmentation
dc.keywordsImages
dc.languageEnglish
dc.publisherBentham Science
dc.sourceCurrent Medical Imaging
dc.subjectRadiology
dc.subjectNuclear medicine
dc.subjectImaging systems in medicine
dc.titleClassification of pharynx from MRI using a visual analysis tool to study obstructive sleep apnea
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-6917-5154
local.contributor.kuauthorSaleem, Muhammad Khurram

Files