Publication:
Analysis of experimentally validated trans-ionospheric attenuation estimates of VLF signals

dc.contributor.coauthorGraf, K. L.
dc.contributor.coauthorLehtinen, N. G.
dc.contributor.coauthorSpasojevic, M.
dc.contributor.coauthorCohen, M. B.
dc.contributor.coauthorMarshall, R. A.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorİnan, Umran Savaş
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T13:47:36Z
dc.date.issued2013
dc.description.abstractAccurate models of trans-ionospheric propagation are needed to assess the role of Earth-originating very low frequency (VLF) electromagnetic waves in radiation belt dynamics. Recent studies have called the relatively crude early trans-ionospheric models into question, finding that they underestimate the attenuation by 20–100 dB. A full wave model that includes all of the relevant physics has recently become available and experimentally verifed to within a few decibels via comparison to more extensive satellite data. Using this model, we discuss the importance of wave polarization, incidence angle, bearing, ground conductivity, horizontal distance from the source, and the ionospheric pro?le, all of which are demonstrated to play a signifcant role in the trans-ionospheric propagation. Trans-ionospheric attenuation estimates are provided both for the case of vertical incidence of a whistler-mode wave and for the case of magnetospheric injection from a dipolar terrestrial VLF source. These
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipAFRL
dc.description.sponsorshipNSF
dc.description.versionPublisher version
dc.description.volume118
dc.identifier.doi10.1002/jgra.50228
dc.identifier.eissn2169-9403
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00034
dc.identifier.issn2169-9402
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84882768832
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3777
dc.identifier.wos325215800076
dc.keywordsThe Earth's electrical environment
dc.keywordsUpper atmosphere
dc.keywordsLightning discharges
dc.keywordsRadiation belts
dc.keywordsIonosphere
dc.language.isoeng
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.grantnoFA9453-11-C-0011
dc.relation.grantno1043442
dc.relation.grantno1141791
dc.relation.ispartofJournal of Geophysical Research
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1065
dc.subjectElectrical and electronic engineering
dc.titleAnalysis of experimentally validated trans-ionospheric attenuation estimates of VLF signals
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorİnan, Umran Savaş
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1065.pdf
Size:
828.02 KB
Format:
Adobe Portable Document Format