Publication:
Multiparametric detection and outcome prediction of pancreatic cancer involving dual-energy CT, diffusion-weighted MRI, and radiomics

dc.contributor.coauthorKoch, Vitali
dc.contributor.coauthorWeitzer, Nils
dc.contributor.coauthorDos Santos, Daniel Pinto
dc.contributor.coauthorGruenewald, Leon D.
dc.contributor.coauthorMahmoudi, Scherwin
dc.contributor.coauthorMartin, Simon S.
dc.contributor.coauthorEichler, Katrin
dc.contributor.coauthorBernatz, Simon
dc.contributor.coauthorGruber-Rouh, Tatjana
dc.contributor.coauthorBooz, Christian
dc.contributor.coauthorHammerstingl, Renate M.
dc.contributor.coauthorBiciusca, Teodora
dc.contributor.coauthorRosbach, Nicolas
dc.contributor.coauthorGökduman, Aynur
dc.contributor.coauthorD’Angelo, Tommaso
dc.contributor.coauthorFinkelmeier, Fabian
dc.contributor.coauthorYel, Ibrahim
dc.contributor.coauthorAlizadeh, Leona S.
dc.contributor.coauthorSommer, Christof M.
dc.contributor.coauthorVogl, Thomas J.
dc.contributor.coauthorAlbrecht, Moritz H.
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.kuauthorCengiz, Duygu
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.date.accessioned2025-01-19T10:29:48Z
dc.date.issued2023
dc.description.abstractBackground: The advent of next-generation computed tomography (CT)- and magnetic resonance imaging (MRI) opened many new perspectives in the evaluation of tumor characteristics. An increasing body of evidence suggests the incorporation of quantitative imaging biomarkers into clinical decision-making to provide mineable tissue information. The present study sought to evaluate the diagnostic and predictive value of a multiparametric approach involving radiomics texture analysis, dual-energy CT-derived iodine concentration (DECT-IC), and diffusion-weighted MRI (DWI) in participants with histologically proven pancreatic cancer. Methods: In this study, a total of 143 participants (63 years ± 13, 48 females) who underwent third-generation dual-source DECT and DWI between November 2014 and October 2022 were included. Among these, 83 received a final diagnosis of pancreatic cancer, 20 had pancreatitis, and 40 had no evidence of pancreatic pathologies. Data comparisons were performed using chi-square statistic tests, one-way ANOVA, or two-tailed Student’s t-test. For the assessment of the association of texture features with overall survival, receiver operating characteristics analysis and Cox regression tests were used. Results: Malignant pancreatic tissue differed significantly from normal or inflamed tissue regarding radiomics features (overall P <.001, respectively) and iodine uptake (overall P <.001, respectively). The performance for the distinction of malignant from normal or inflamed pancreatic tissue ranged between an AUC of ≥ 0.995 (95% CI, 0.955–1.0; P <.001) for radiomics features, ≥ 0.852 (95% CI, 0.767–0.914; P <.001) for DECT-IC, and ≥ 0.690 (95% CI, 0.587–0.780; P =.01) for DWI, respectively. During a follow-up of 14 ± 12 months (range, 10–44 months), the multiparametric approach showed a moderate prognostic power to predict all-cause mortality (c-index = 0.778 [95% CI, 0.697–0.864], P =.01). Conclusions: Our reported multiparametric approach allowed for accurate discrimination of pancreatic cancer and revealed great potential to provide independent prognostic information on all-cause mortality.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessAll Open Access; Gold Open Access; Green Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume23
dc.identifier.doi10.1186/s40644-023-00549-8
dc.identifier.issn1470-7330
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85152863771
dc.identifier.urihttps://doi.org/10.1186/s40644-023-00549-8
dc.identifier.urihttps://hdl.handle.net/20.500.14288/25952
dc.identifier.wos970026200002
dc.keywordsDiffusion magnetic resonance imaging
dc.keywordsDual-energy computed tomography
dc.keywordsMultidetector computed tomography
dc.keywordsPancreatic cancer
dc.keywordsSurvival
dc.language.isoeng
dc.publisherBiomed Central Ltd
dc.relation.ispartofCancer Imaging
dc.subjectOncology
dc.subjectRadiology, nuclear medicine
dc.subjectMedical imaging
dc.titleMultiparametric detection and outcome prediction of pancreatic cancer involving dual-energy CT, diffusion-weighted MRI, and radiomics
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorCengiz, Duygu
local.publication.orgunit1KUH (KOÇ UNIVERSITY HOSPITAL)
local.publication.orgunit2KUH (Koç University Hospital)
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05405.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format