Publication:
The RSNA international COVID-19 Open Radiology Database (RICORD)

dc.contributor.coauthorTsai, Emily B.
dc.contributor.coauthorSimpson, Scott
dc.contributor.coauthorLungren, Matthew P.
dc.contributor.coauthorHershman, Michelle
dc.contributor.coauthorRoshkovan, Leonid
dc.contributor.coauthorColak, Errol
dc.contributor.coauthorErickson, Bradley J.
dc.contributor.coauthorShih, George
dc.contributor.coauthorStein, Anouk
dc.contributor.coauthorKalpathy-Cramer, Jayashree
dc.contributor.coauthorShen, Jody
dc.contributor.coauthorHafez, Mona
dc.contributor.coauthorJohn, Susan
dc.contributor.coauthorRajiah, Prabhakar
dc.contributor.coauthorPogatchnik, Brian P.
dc.contributor.coauthorMongan, John
dc.contributor.coauthorRanschaert, Erik R.
dc.contributor.coauthorKitamura, Felipe C.
dc.contributor.coauthorTopff, Laurens
dc.contributor.coauthorMoy, Linda
dc.contributor.coauthorKanne, Jeffrey P.
dc.contributor.coauthorWu, Carol C.
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorAltınmakas, Emre
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T13:08:03Z
dc.date.issued2021
dc.description.abstractThe coronavirus disease 2019 (COVID-19) pandemic is a global health care emergency. Although reverse-transcription polymerase chain reaction testing is the reference standard method to identify patients with COVID-19 infection, chest radiography and CT play a vital role in the detection and management of these patients. Prediction models for COVID-19 imaging are rapidly being developed to support medical decision making. However, inadequate availability of a diverse annotated data set has limited the performance and generalizability of existing models. To address this unmet need, the RSNA and Society of Thoracic Radiology collaborated to develop the RSNA International COVID-19 Open Radiology Database (RICORD). This database is the first multi-institutional, multinational, expert-annotated COVID-19 imaging data set. It is made freely available to the machine learning community as a research and educational resource for COVID-19 chest imaging. Pixel-level volumetric segmentation with clinical annotations was performed by thoracic radiology subspecialists for all COVID-19-positive thoracic CT scans. The labeling schema was coordinated with other international consensus panels and COVID-19 data annotation efforts, the European Society of Medical Imaging Informatics, the American College of Radiology, and the American Association of Physicists in Medicine. Study-level COVID-19 classification labels for chest radiographs were annotated by three radiologists, with majority vote adjudication by board-certified radiologists. RICORD consists of 240 thoracic CT scans and 1000 chest radiographs contributed from four international sites. It is anticipated that RICORD will ideally lead to prediction models that can demonstrate sustained performance across populations and health care systems.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume299
dc.identifier.doi10.1148/radiol.2021203957
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02842
dc.identifier.issn0033-8419
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85103473822
dc.identifier.urihttps://doi.org/10.1148/radiol.2021203957
dc.identifier.wos631703800005
dc.language.isoeng
dc.publisherRadiological Society of North America (RSNA)
dc.relation.grantnoNA
dc.relation.ispartofRadiology
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9493
dc.subjectRadiology
dc.subjectNuclear medicine
dc.subjectMedical imaging
dc.titleThe RSNA international COVID-19 Open Radiology Database (RICORD)
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAltınmakas, Emre
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1KUH (KOÇ UNIVERSITY HOSPITAL)
local.publication.orgunit2KUH (Koç University Hospital)
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9493.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format