Publication:
Integration of machine learning and optimization models for a data-driven lot sizing problem with random yield

dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorBibak, Bijan
dc.contributor.kuauthorKaraesmen, Fikri
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:33:02Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractWe investigate a data-driven lot sizing problem under random yield. Motivated by semi-conductor production, we focus on the case where the random yield rate of a manufacturing process depends on a large number of features that can be observed before the lot sizing decision is made. Similarly, demand may also be random and may depend on a number of features. The lot sizing problem in this setting is challenging because the optimal decision depends on a large number of observed features for which there is limited data. To address this challenge, we propose estimation and optimization methods that combine tools from machine learning with tools from stochastic optimization. Using a publicly available data set for semi-conductor yield data and an additional synthetic data set, we compare the performance of different estimation and optimization approaches. We show that there is significant value of taking feature information into account for cost minimization. We also find that the best method for this problem combines tools from estimation with theoretical optimization properties of the random yield inventory problem. © 2025
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.indexedbyWOS
dc.description.publisherscopeN/A
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTÜBİTAK (Grant no. 123M871)
dc.identifier.doi10.1016/j.ijpe.2025.109529
dc.identifier.embargoNo
dc.identifier.issn0925-5273
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85216467569
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29229
dc.identifier.volume282
dc.keywordsInventory control
dc.keywordsLot sizing
dc.keywordsYield uncertainty
dc.keywordsData-driven optimization
dc.keywordsMachine learning
dc.language.isoeng
dc.publisherElsevier
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational Journal of Production Economics
dc.titleIntegration of machine learning and optimization models for a data-driven lot sizing problem with random yield
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameBibak
person.familyNameKaraesmen
person.givenNameBijan
person.givenNameFikri
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files