Publication:
Two-hand on-skin gesture recognition: a dataset and classification network for enhanced human-computer interaction

dc.contributor.coauthorKeskin, Ege
dc.contributor.departmentDepartment of Media and Visual Arts
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorÖzcan, Oğuzhan
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:55:16Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractGestural interaction is an increasingly utilized method for controlling devices and environments. Despite the growing research on gesture recognition, datasets tailored specifically for two-hand on-skin interaction remain scarce. This paper presents the two-hand on-skin (THOS) dataset, comprising 3096 labeled samples and 92,880 frames from three subjects across nine gesture classes. The dataset is based on hand-specific on-skin (HSoS) gestures, which involve direct contact between both hands. We also introduce THOSnet, a hybrid model leveraging transformer decoders and bi-directional long short-term memory (BiLSTM) for gesture classification. Evaluations show that THOSnet outperforms standalone transformer encoders and BiLSTMs, achieving an average test accuracy of 79.31% on the THOS dataset. Our contributions aim to bridge the gap between dynamic gesture recognition and on-skin interaction research, offering valuable resources for developing and testing advanced gesture recognition models. By open-sourcing the dataset and code through https://github.com/ege621/thos-dataset, we facilitate further research and reproducibility in this area.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1007/s00371-025-04125-y
dc.identifier.eissn1432-2315
dc.identifier.embargoNo
dc.identifier.endpage11656
dc.identifier.issn0178-2789
dc.identifier.issue13
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-105012936416
dc.identifier.startpage11641
dc.identifier.urihttps://doi.org/10.1007/s00371-025-04125-y
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30052
dc.identifier.volume41
dc.identifier.wos001541832500001
dc.keywordsOn-skin gestures
dc.keywordsDataset
dc.keywordsDynamic gesture
dc.keywordsTwo-hand gestures
dc.keywordsDeep learning
dc.language.isoeng
dc.publisherSpringer
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofVisual Computer
dc.subjectComputer science
dc.subjectSoftware engineering
dc.titleTwo-hand on-skin gesture recognition: a dataset and classification network for enhanced human-computer interaction
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameÖzcan
person.familyNameYemez
person.givenNameOğuzhan
person.givenNameYücel
relation.isOrgUnitOfPublication483fa792-2b89-4020-9073-eb4f497ee3fd
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery483fa792-2b89-4020-9073-eb4f497ee3fd
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files