Publication:
Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing

dc.contributor.coauthorLiu, Z.
dc.contributor.coauthorLi, M.
dc.contributor.coauthorDong, X.
dc.contributor.coauthorRen, Z.
dc.contributor.coauthorHu, W.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T11:44:22Z
dc.date.issued2022
dc.description.abstractMagnetically driven wireless miniature devices have become promising recently in healthcare, information technology, and many other fields. However, they lack advanced fabrication methods to go down to micrometer length scales with heterogeneous functional materials, complex three-dimensional (3D) geometries, and 3D programmable magnetization profiles. To fill this gap, we propose a molding-integrated direct laser writing-based microfabrication approach in this study and showcase its advanced enabling capabilities with various proof-of-concept functional microdevice prototypes. Unique motions and functionalities, such as metachronal coordinated motion, fluid mixing, function reprogramming, geometrical reconfiguring, multiple degrees-of-freedom rotation, and wireless stiffness tuning are exemplary demonstrations of the versatility of this fabrication method. Such facile fabrication strategy can be applied toward building next-generation smart microsystems in healthcare, robotics, metamaterials, microfluidics, and programmable matter.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipGerman Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume13
dc.identifier.doi10.1038/s41467-022-29645-2
dc.identifier.eissn2041-1723
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03630
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85128360517
dc.identifier.urihttps://doi.org/10.1038/s41467-022-29645-2
dc.identifier.wos784997300021
dc.keywordsLasers
dc.keywordsLight
dc.keywordsMagnetics
dc.keywordsMicrotechnology
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.grantno834531
dc.relation.grantno2197/3-1
dc.relation.ispartofNature Portfolio
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10490
dc.subjectScience and technology
dc.titleCreating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10490.pdf
Size:
5.02 MB
Format:
Adobe Portable Document Format