Publication:
Characterization and comparative evaluation of polysulfone and polypropylene hollow fiber membranes for blood oxygenators

dc.contributor.coauthorTeber, Oguz Orhun
dc.contributor.coauthorAltinay, Aysegul Derya
dc.contributor.coauthorNaziri Mehrabani, Seyed Ali
dc.contributor.coauthorZeytuncu, Bihter
dc.contributor.coauthorAtes-Genceli, Esra
dc.contributor.coauthorDulekgurgen, Ebru
dc.contributor.coauthorYildiz, Yahya
dc.contributor.coauthorKoyuncu, Ismail
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorKöse, Tansu Gölcez
dc.contributor.kuauthorPekkan, Kerem
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:38:15Z
dc.date.issued2024
dc.description.abstractBlood oxygenators are used to saturate oxygen levels and remove carbon dioxide from the body during cardiopulmonary bypass. Although the natural lung is hydrophilic, commercially used oxygenator materials are hydrophobic. Surface hydrophobicity weakens blood compatibility, as long-term contact with the blood environment may lead to different degrees of blood activity. Polysulfone may be considered an alternative hydrophilic material in the design of oxygenators. Therefore, it may be directed toward developing hydrophilic membranes. This study aims to investigate the feasibility of achieving blood gas transfer with a polysulfone-based microporous hollow fiber membrane and compare it with the commercially available polypropylene membranes. Structural differences in the membrane morphology, surface hydrophilicity, tortuosity, mass transfer rate, and material properties under different operation conditions of temperature and flow rates are reported. The polysulfone membrane has a water contact angle of 81.3 degrees, whereas a commercial polypropylene membrane is 94.5 degrees. The mass transfer resistances (s/m) for the polysulfone and polypropylene membranes are calculated to be 4.8 x 104 and 1.5 x 104 at 25 degrees C, respectively. The module made of polysulfone was placed in the cardiopulmonary bypass circuit in parallel with the commercial oxygenator, and pH, pO2, pCO2 levels, and metabolic activity were measured in blood samples. Preparation steps of the blood oxygenator.image
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue12
dc.description.openaccesshybrid
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsEuropean Research Council, Grant/Award Number: ERC-PoC 966765; TUBITAK,Grant/Award Number: 118S108 (118S109)
dc.description.volume141
dc.identifier.doi10.1002/app.55121
dc.identifier.eissn1097-4628
dc.identifier.issn0021-8995
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85181233960
dc.identifier.urihttps://doi.org/10.1002/app.55121
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22629
dc.identifier.wos1137893500001
dc.keywordsArtificial lung
dc.keywordsBlood oxygenator
dc.keywordsCardiovascular devices
dc.keywordsPolypropylene
dc.keywordsPolysulfone
dc.languageen
dc.publisherWiley
dc.relation.grantnoEuropean Research Council [ERC-PoC 966765]
dc.relation.grantnoTUBITAK [118S108, 118S109]
dc.sourceJournal of Applied Polymer Science
dc.subjectPolymer science
dc.titleCharacterization and comparative evaluation of polysulfone and polypropylene hollow fiber membranes for blood oxygenators
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorKöse, Tansu Gölcez
local.contributor.kuauthorPekkan, Kerem
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files