Publication:
Deep-learning-enabled electromagnetic near-field prediction and inverse design of metasurfaces

dc.contributor.coauthorKanmaz, Tevfik bulent
dc.contributor.coauthorOzturk, Efe
dc.contributor.coauthorDemir, Hilmi volkan
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorDemir, Çiğdem Gündüz
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-01-19T10:31:15Z
dc.date.issued2023
dc.description.abstractMetasurfaces generate desired electromagnetic wavefronts using sub-wavelength structures that are much thinner than conventional optical tools. However, their typical design method is based on trial and error, which is adversely inefficient in terms of the consumed time and computational power. This paper proposes and demonstrates deep-learning-enabled rapid prediction of the full electromagnetic near-field response and inverse prediction of the metasurfaces from desired wavefronts to obtain direct and rapid designs. The proposed encoder-decoder neural network was tested for different metasurface design configurations. This approach overcomes the common issue of predicting only the transmission spectra, a critical limitation of the previous reports of deep-learning-based solutions. Our deep-learning-empowered near-field model can conveniently be used as a rapid simulation tool for metasurface analyses as well as for their direct rapid design. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue10
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipAgency for Science, Technology and Research (M21J9b0085) ; Tuerkiye Bilimsel ve Teknolojik Ara,st & imath;rma Kurumu (20AG001, 121C266, 121N395, 120N076, 119N343) ; Tuerkiye Bilimler Akademisi.
dc.description.volume10
dc.identifier.doi10.1364/OPTICA.498211
dc.identifier.issn2334-2536
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85175494664
dc.identifier.urihttps://doi.org/10.1364/OPTICA.498211
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26203
dc.identifier.wos1105886900001
dc.keywordsDesign method
dc.keywordsElectromagnetic near fields
dc.keywordsElectromagnetics
dc.keywordsInverse designs
dc.keywordsMetasurface
dc.keywordsOptical tools
dc.keywordsRapid design
dc.keywordsSub-wavelength structures
dc.keywordsTrial and error
dc.keywordsTypical design
dc.keywordsDeep learning
dc.keywordsDesign
dc.keywordsElectric power transmission
dc.keywordsForecasting
dc.keywordsInverse problems
dc.language.isoeng
dc.publisherOptica Publishing Group
dc.relation.grantnoTuerkiye Bilimsel ve Teknolojik Ara,stimath;rma Kurumu [121C266, 121N395, 120N076, 119N343, M21J9b0085]; Agency for Science, Technology and Research; Tuerkiye Bilimler Akademisi; [20AG001]
dc.relation.ispartofOptica
dc.subjectOptics
dc.subjectComputer engineering
dc.titleDeep-learning-enabled electromagnetic near-field prediction and inverse design of metasurfaces
dc.typeJournal Article
dspace.entity.typePublication
local.publication.orgunit1College of Engineering
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2KUIS AI (Koç University & İş Bank Artificial Intelligence Center)
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05675.pdf
Size:
40.64 MB
Format:
Adobe Portable Document Format