Publication:
Effect of surface characteristics of graphene aerogels and hydrophilicity of ionic liquids on the CO2/CH4 separation performance of ionic liquid/reduced graphene aerogel composites

dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.departmentKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.kuauthorÇağlayan, Hatice Pelin
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorÜnal, Uğur
dc.contributor.kuauthorUzun, Alper
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-10T00:01:24Z
dc.date.issued2023
dc.description.abstractTwo ionic liquids (ILs) having the same cation with different anions offering opposite hydrophilic/hydrophobic characters, 1-n-butyl-1-methylpyrrolidinium dicyanamide ([BMPyr][DCA]) and 1-n-butyl-1-methylpyrrolidinium hexafluorophosphate ([BMPyr][PF6]), were impregnated onto two different reduced graphene aerogels (rGAs) prepared by the thermal treatment of GAs at 300 and 500 degrees C to investigate the consequences of the changes in the hydrophilic character of ILs and the reduction temperature of the GAs on the corresponding gas sorption and separation performance of the IL/rGAs. The structural analyses of nanoporous rGAs and IL/rGAs pointed to a change in the quantity of oxygenated functional groups upon thermal treatment and a change in the direct interactions between IL molecules and the host rGA surface upon IL deposition. Single-component CO2 and CH4 sorption measurements were performed for each rGA and IL/rGA composite, and both ideal and mixture CO2/CH4 selectivities were calculated. The samples prepared by reducing the GA at 300 and 500 degrees C yielded ideal CO2/ CH4 selectivities of 3.6 and 18 at 1 mbar and 25 degrees C, respectively. Among IL/rGA composites, the one prepared at 300 degrees C displayed a remarkable CO2/CH4 separation performance when combined with the hydrophobic [BMPyr][PF6], offering an ideal selectivity of 450.9 at 1 mbar and 25 degrees C, whereas the composite prepared with rGA500 yielded a substantially high CO2/CH4 selectivity of 173.5 after the incorporation of the hydrophilic [BMPyr][DCA] at 1 mbar and 25 degrees C. The ideal CO2/CH4 selectivities of [BMPyr][PF6]/ rGA300 and [BMPyr][DCA]/rGA500 surpassed most of the previously reported selectivities of carbon-based materials in the literature. These results demonstrate the broad potential of IL/rGAs in sorption-based gas separations owing to the highly tunable nature of both the structure of IL and the surface characteristics of rGA.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TÜBİTAK)
dc.identifier.doi10.1021/acsanm.2c05476
dc.identifier.eissn2574-0970
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85147574131
dc.identifier.urihttps://doi.org/10.1021/acsanm.2c05476
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15967
dc.identifier.wos927054100001
dc.keywordsGraphene aerogel
dc.keywordsIonic liquid (IL)
dc.keywordsGas separation
dc.keywordsPorous sorbent
dc.keywordsCO2/CH4 separation
dc.keywordsComposites
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno217M547
dc.relation.ispartofACS Applied Nano Materials
dc.subjectNanoscience and nanotechnology
dc.subjectMaterials science, multidisciplinary
dc.titleEffect of surface characteristics of graphene aerogels and hydrophilicity of ionic liquids on the CO2/CH4 separation performance of ionic liquid/reduced graphene aerogel composites
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÇağlayan, Hatice Pelin
local.contributor.kuauthorÜnal, Uğur
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorUzun, Alper
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Sciences
local.publication.orgunit1College of Engineering
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Chemistry
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2KUTEM (Koç University Tüpraş Energy Center)
local.publication.orgunit2KUYTAM (Koç University Surface Science and Technology Center)
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isOrgUnitOfPublicationd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04257.pdf
Size:
6.46 MB
Format:
Adobe Portable Document Format