Publication:
Virtual reality-empowered deep-learning analysis of brain cells

dc.contributor.coauthorKaltenecker, Doris
dc.contributor.coauthorAl-Maskari, Rami
dc.contributor.coauthorNegwer, Moritz
dc.contributor.coauthorHoeher, Luciano
dc.contributor.coauthorKofler, Florian
dc.contributor.coauthorZhao, Shan
dc.contributor.coauthorTodorov, Mihail
dc.contributor.coauthorRong, Zhouyi
dc.contributor.coauthorPaetzold, Johannes Christian
dc.contributor.coauthorWiestler, Benedikt
dc.contributor.coauthorPiraud, Marie
dc.contributor.coauthorRueckert, Daniel
dc.contributor.coauthorGeppert, Julia
dc.contributor.coauthorMorigny, Pauline
dc.contributor.coauthorRohm, Maria
dc.contributor.coauthorMenze, Bjoern H.
dc.contributor.coauthorHerzig, Stephan
dc.contributor.coauthorBerriel Diaz, Mauricio
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorErtürk, Ali Maximilian
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-12-29T09:39:07Z
dc.date.issued2024
dc.description.abstractAutomated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease. © The Author(s) 2024.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue7
dc.description.openaccessAll Open Access
dc.description.openaccessHybrid Gold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorship 
dc.description.volume21
dc.identifier.doi10.1038/s41592-024-02245-2
dc.identifier.eissn1548-7105
dc.identifier.issn1548-7091
dc.identifier.link 
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85191101827
dc.identifier.urihttps://doi.org/10.1038/s41592-024-02245-2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22893
dc.identifier.wos1206061000001
dc.keywordsAnimals
dc.keywordsBrain
dc.keywordsDeep learning
dc.keywordsHumans
dc.keywordsImage processing, computer-assisted
dc.keywordsMice
dc.keywordsNeurons
dc.keywordsProto-oncogene proteins c-fos
dc.keywordsSoftware
dc.keywordsVirtual reality
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.grantno 
dc.relation.ispartofNature Methods
dc.rights 
dc.subjectBiochemical research methods
dc.titleVirtual reality-empowered deep-learning analysis of brain cells
dc.typeJournal Article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorErtürk, Ali Maximilian
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05071.pdf
Size:
6.58 MB
Format:
Adobe Portable Document Format