Publication: Virtual reality-empowered deep-learning analysis of brain cells
dc.contributor.coauthor | Kaltenecker, Doris | |
dc.contributor.coauthor | Al-Maskari, Rami | |
dc.contributor.coauthor | Negwer, Moritz | |
dc.contributor.coauthor | Hoeher, Luciano | |
dc.contributor.coauthor | Kofler, Florian | |
dc.contributor.coauthor | Zhao, Shan | |
dc.contributor.coauthor | Todorov, Mihail | |
dc.contributor.coauthor | Rong, Zhouyi | |
dc.contributor.coauthor | Paetzold, Johannes Christian | |
dc.contributor.coauthor | Wiestler, Benedikt | |
dc.contributor.coauthor | Piraud, Marie | |
dc.contributor.coauthor | Rueckert, Daniel | |
dc.contributor.coauthor | Geppert, Julia | |
dc.contributor.coauthor | Morigny, Pauline | |
dc.contributor.coauthor | Rohm, Maria | |
dc.contributor.coauthor | Menze, Bjoern H. | |
dc.contributor.coauthor | Herzig, Stephan | |
dc.contributor.coauthor | Berriel Diaz, Mauricio | |
dc.contributor.department | School of Medicine | |
dc.contributor.kuauthor | Ertürk, Ali Maximilian | |
dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
dc.date.accessioned | 2024-12-29T09:39:07Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease. © The Author(s) 2024. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 7 | |
dc.description.openaccess | All Open Access | |
dc.description.openaccess | Hybrid Gold Open Access | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | ||
dc.description.volume | 21 | |
dc.identifier.doi | 10.1038/s41592-024-02245-2 | |
dc.identifier.eissn | 1548-7105 | |
dc.identifier.issn | 1548-7091 | |
dc.identifier.link | ||
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85191101827 | |
dc.identifier.uri | https://doi.org/10.1038/s41592-024-02245-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/22893 | |
dc.identifier.wos | 1206061000001 | |
dc.keywords | Animals | |
dc.keywords | Brain | |
dc.keywords | Deep learning | |
dc.keywords | Humans | |
dc.keywords | Image processing, computer-assisted | |
dc.keywords | Mice | |
dc.keywords | Neurons | |
dc.keywords | Proto-oncogene proteins c-fos | |
dc.keywords | Software | |
dc.keywords | Virtual reality | |
dc.language.iso | eng | |
dc.publisher | Nature Portfolio | |
dc.relation.grantno | ||
dc.relation.ispartof | Nature Methods | |
dc.rights | ||
dc.subject | Biochemical research methods | |
dc.title | Virtual reality-empowered deep-learning analysis of brain cells | |
dc.type | Journal Article | |
dc.type.other | ||
dspace.entity.type | Publication | |
local.contributor.kuauthor | Ertürk, Ali Maximilian | |
local.publication.orgunit1 | SCHOOL OF MEDICINE | |
local.publication.orgunit2 | School of Medicine | |
relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isOrgUnitOfPublication.latestForDiscovery | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e |
Files
Original bundle
1 - 1 of 1