Publication: Finite-dimensional attractors for the quasi-linear strongly-damped wave equation
dc.contributor.coauthor | Zelik, Sergey | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Kalantarov, Varga | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T23:37:53Z | |
dc.date.issued | 2009 | |
dc.description.abstract | We present a new method of investigating the so-called quasi-linear strongly-damped wave equations partial derivative(2)(t)u - gamma partial derivative(t)Delta(x)u - Delta(x)u + f(u) = del(x).phi'(del(x)u) + g in bounded 3D domains. This method allows us to establish the existence and uniqueness of energy solutions in the case where the growth exponent of the non-linearity phi is less than 6 and f may have arbitrary polynomial growth rate. Moreover, the existence of a finite-dimensional global and exponential attractors for the solution semigroup associated with that equation and their additional regularity are also established. In a particular case phi equivalent to 0 which corresponds to the so-called semi-linear strongly-damped wave equation, our result allows to remove the long-standing growth restriction vertical bar f(u)vertical bar <= C(1 + vertical bar u vertical bar(5)). | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 4 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 247 | |
dc.identifier.doi | 10.1016/j.jde.2009.04.010 | |
dc.identifier.eissn | 1090-2732 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-67349211200 | |
dc.identifier.uri | https://doi.org/10.1016/j.jde.2009.04.010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/12893 | |
dc.identifier.wos | 267035500006 | |
dc.keywords | Quasi-linear strongly-damped wave equation | |
dc.keywords | Energy solutions | |
dc.keywords | Uniqueness | |
dc.keywords | Regularity | |
dc.keywords | Global attractor | |
dc.keywords | Partial-differential-equations | |
dc.keywords | Global regular solutions | |
dc.keywords | Asymptotic regularity | |
dc.keywords | Evolution-equations | |
dc.keywords | Nonlinear viscoelasticity | |
dc.keywords | Exponential attractors | |
dc.keywords | Strong dissipation | |
dc.keywords | Uniform-spaces | |
dc.keywords | Time behavior | |
dc.keywords | Existence | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Journal of Differential Equations | |
dc.subject | Mathematics | |
dc.title | Finite-dimensional attractors for the quasi-linear strongly-damped wave equation | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Kalantarov, Varga | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit2 | Department of Mathematics | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |