Publication:
The protective effect of vitamin U on valproic acid-induced lung toxicity in rats via amelioration of oxidative stress

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Oztay, Fusun
Tunali, Sevim
Yanardag, Refiye

Advisor

Publication Date

Language

English

Journal Title

Journal ISSN

Volume Title

Abstract

Vitamin U (Vit U) is a novel free-radical scavenger. The protective effect of Vit U on valproic acid (VPA)-induced lung damage was examined. Rats were divided into four groups: control rats; rats given Vit U (50 mg/kg/d, by gavage) for 15 days; rats treated with VPA (500 mg/kg/d, intraperitoneally) for 15 days; and rats were given VPA + Vit U (in same dose and time). On the 16th day of the experiment, the lungs were collected from rats. Lung structure, pulmonary oxidant/antioxidant parameters and Nrf2, alpha-SMA, and collagen-1 were evaluated by microscopic and biochemical analysis. Additionally, it was determined the interactions of Vit U with Nrf2 and Keap1 by in silico analysis. VPA administration increased lipid peroxidation and the activity of lactate dehydrogenase and myeloperoxidase. However, it decreased the glutathione level, and the activities of glutathione peroxidase, glutathione-S-transferase, catalase, and superoxide dismutase. VPA-mediated oxidative stress prompted structural distortion and fibrotic alterations in the lung. Vit U supplementation reversed structural and biochemical alterations, induced antioxidant system through Nrf2 activation, and attenuated fibrosis by reducing collagen expression in VPA-administered rats. However, Vit U pretreatment was unable to reduce alpha-SMA levels in the lung of VPA-treated rats. Molecular docking analysis showed the binding of Vit U to ETGE motif leads to dissociation of Nrf2 from the Nrf2/Keap1 complex and its transfer to nuclei. In conclusion, Vit U attenuated VPA-induced tissue damage by restoring antioxidative systems through amelioration of Nrf2 activity in the lung under oxidative stress.

Source:

Journal Of Biochemical And Molecular Toxicology

Publisher:

Wiley

Keywords:

Subject

Biochemistry, Molecular biology, Toxicology

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyrights Note

0

Views

0

Downloads

View PlumX Details